
Subject: Re: [RFC][PATCH 4/4] PID: use the target ID specified in procfs
Posted by ebiederm on Wed, 12 Mar 2008 19:58:56 GMT
View Forum Message <> Reply to Message

"Nadia Derbey" <Nadia.Derbey@bull.net> writes:
> A couple of weeks ago, a discussion has started after Pierre's proposal for
> a new syscall to change an ipc id (see thread
> http://lkml.org/lkml/2008/1/29/209).
>
>
> Oren's suggestion was to force an object's id during its creation, rather
> than 1. create it, 2. change its id.
>
> So here is an implementation of what Oren has suggested.
>
> 2 new files are defined under /proc/self:
> . next_ipcid --> next id to use for ipc object creation
> . next_pids --> next upid nr(s) to use for next task to be forked
> (see patch #2 for more details).
>
> When one of these files (or both of them) is filled, a structure pointed to
> by the calling task struct is filled with these ids.
>
> Then, when the object is created, the id(s) present in that structure are
> used, instead of the default ones.
> A couple of weeks ago, a discussion has started after Pierre's proposal for
> a new syscall to change an ipc id (see thread
> http://lkml.org/lkml/2008/1/29/209).
>
>
> Oren's suggestion was to force an object's id during its creation, rather
> than 1. create it, 2. change its id.
>
> So here is an implementation of what Oren has suggested.
>
> 2 new files are defined under /proc/self:
> . next_ipcid --> next id to use for ipc object creation
> . next_pids --> next upid nr(s) to use for next task to be forked
> (see patch #2 for more details).
>
> When one of these files (or both of them) is filled, a structure pointed to
> by the calling task struct is filled with these ids.
>
> Then, when the object is created, the id(s) present in that structure are
> used, instead of the default ones.

"Serge E. Hallyn" <serue@us.ibm.com> writes:

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=220
https://new-forum.openvz.org/index.php?t=rview&th=5636&goto=28265#msg_28265
https://new-forum.openvz.org/index.php?t=post&reply_to=28265
https://new-forum.openvz.org/index.php

> Right the alloc_pidmap() changes will probably be pretty much the same
> no matter how we do set_it(), so it's worth discussing. But I'm
> particularly curious to see what opinions are on the sys_setid().

A couple of comments. With respect to alloc_pidmap we already have
the necessary controls (a minimum and a maximum) in place for the
allocation. So except for double checking that those controls are exported
in /proc/sys we don't necessarily need to do anything, special.

Just play games with the minimum pid value before you fork.

Second at least to get the memory map correct we need additional
kernel support.

Third to actually get the values out it appears we need additional kernel
support as well. From my limited playing with these things at least
parts of the code were easier to implement in the kernel. The hoops
you have to go to restore a single process (without threads) are
absolutely horrendous in user space.

So this patchset whether it is setid or setting the id at creation time
seems to be jumping the gun. For some namespaces renames are valid and
we can support them. For other namespaces setting the id is a big no-no,
and possibly even controlling the id at creation time is a problem (at
least in the general sense). Because if you can easily control the id
you may be able to more easily exploit security holes.

I'm not at all inclined to make it easy for userspace to rename or set
the id of a new resource unless it already makes sense in that
namespace.

We need to limit anything in a checkpoint to user space visible
state. For sockets this can get fairly abstract since on the wire
state of a tcp socket is in some sense user visible. However it
should not include things that user space can never see like socket
hash values.

Partly what this set of patches demonstrates is that it is fairly
straight forward to restore ids. Getting the little details of the
proper maintainable user space interface correct is harder.

The goal with any userspace implementation is to that we can separate
policy form mechanism. So what are the trade offs for various
approaches.

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

At least for inspection at the checkpoint side it would be nice for
debugging applications to easily get at all of the user space visible
state. So there is an argument for making state that is only
indirectly visible, visible for diagnostic and debugging purposes.

For saving the state to disk it appears we need to stop all of the
processes in our container. Again something a debugging application
of an entire container may want to do. Although we also want to stop
the hardware queues for things like networking so we don't transmit
or possibly receive new packets either.

We want a checkpoint/restart to be essentially atomic, with non
of the tasks that we stop being able to prove that they ran while
the checkpoint was being taken. Mostly this is an interprocess
communication blackout, but there may be more to it then that.

We want checkpoint/restart if possible to be incremental. So
we can perform actions like live migration efficiently if most of
the data is not changing.

So there is an argument to perform the work piecemeal instead of
in one big shot. Although if we can load data from wherever
into the kernel data structures quickly it may not be a big deal.

We also want the transfer of state to be fast. Which tends to argue
in the other direction. That we want a bulk operation that can save
out everything and restore everything quickly.

We also want a design that we can implement incrementally. So that
we can avoid supporting everything at first and if there is state
that we should save that we can't (or similarly state that we should
restore but we can't) the save/restore fails. Until that part is
implemented.

Further we need to finish difficult things like sysfs support and
proc support for simply running applications in containers.

So while I think it is good to be thinking and playing with these
ideas now. I think having a more complete story and not pecking on
the pieces right now is important.

My inclination is that create with a specified set of ids is the
proper internal kernel API, so we don't have rework things later,
because reworking things seems to be a lot more work. How we want to
export this to user space is another matter.

One suggestion is to a have /proc or a proc like filesystem that

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

allows us to read, create, and populate files to see all of the
application state. Then in userspace it is possible that the
transfer of the checkpoint would be as simple as rsync.

Ok back to my cave for a bit.

Eric

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 4 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

