
Subject: Re: [PATCH 2/2] Make res_counter hierarchical
Posted by Pavel Emelianov on Tue, 11 Mar 2008 08:17:59 GMT
View Forum Message <> Reply to Message

Balbir Singh wrote:
> Pavel Emelyanov wrote:
>> This allows us two things basically:
>>
>> 1. If the subgroup has the limit higher than its parent has
>> then the one will get more memory than allowed.
>
> But should we allow such configuration? I suspect that we should catch such
> things at the time of writing the limit.

We cannot catch this at the limit-set-time. See, if you have a cgroup A
with a 1GB limit and the usage is 999Mb, then creating a subgroup B with
even 500MB limit will cause the A group consume 1.5GB of memory
effectively.

>> 2. When we will need to account for a resource in more than
>> one place, we'll be able to use this technics.
>>
>> Look, consider we have a memory limit and swap limit. The
>> memory limit is the limit for the sum of RSS, page cache
>> and swap usage. To account for this gracefuly, we'll set
>> two counters:
>>
>> 	 res_counter mem_counter;
>> 	 res_counter swap_counter;
>>
>> attach mm to the swap one
>>
>> 	 mm->mem_cnt = &swap_counter;
>>
>> and make the swap_counter be mem's child. That's it. If we
>> want hierarchical support, then the tree will look like this:
>>
>> mem_counter_top
>> swap_counter_top <- mm_struct living at top
>> mem_counter_sub
>> swap_counter_sub <- mm_struct living at sub
>>
>
> Hmm... not sure about this one. What I want to see is a resource counter
> hierarchy to mimic the container hierarchy. Then ensure that all limits are set
> sanely. I am planning to implement shares support on to of resource counters.
>
>

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=5623&goto=28173#msg_28173
https://new-forum.openvz.org/index.php?t=post&reply_to=28173
https://new-forum.openvz.org/index.php

>> Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
>>
>> ---
>> include/linux/res_counter.h | 11 ++++++++++-
>> kernel/res_counter.c | 36 +++++++++++++++++++++++++++++-------
>> mm/memcontrol.c | 9 ++++++---
>> 3 files changed, 45 insertions(+), 11 deletions(-)
>>
>> diff --git a/include/linux/res_counter.h b/include/linux/res_counter.h
>> index 2c4deb5..a27105e 100644
>> --- a/include/linux/res_counter.h
>> +++ b/include/linux/res_counter.h
>> @@ -41,6 +41,10 @@ struct res_counter {
>> 	 * the routines below consider this to be IRQ-safe
>> 	 */
>> 	spinlock_t lock;
>> +	/*
>> +	 * the parent counter. used for hierarchical resource accounting
>> +	 */
>> +	struct res_counter *parent;
>> };
>>
>> /**
>> @@ -80,7 +84,12 @@ enum {
>> * helpers for accounting
>> */
>>
>> -void res_counter_init(struct res_counter *counter);
>> +/*
>> + * the parent pointer is set only once - during the counter
>> + * initialization. caller then must itself provide that this
>> + * pointer is valid during the new counter lifetime
>> + */
>> +void res_counter_init(struct res_counter *counter, struct res_counter *parent);
>>
>> /*
>> * charge - try to consume more resource.
>> diff --git a/kernel/res_counter.c b/kernel/res_counter.c
>> index f1f20c2..046f6f4 100644
>> --- a/kernel/res_counter.c
>> +++ b/kernel/res_counter.c
>> @@ -13,10 +13,11 @@
>> #include <linux/res_counter.h>
>> #include <linux/uaccess.h>
>>
>> -void res_counter_init(struct res_counter *counter)
>> +void res_counter_init(struct res_counter *counter, struct res_counter *parent)
>> {

Page 2 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>> 	spin_lock_init(&counter->lock);
>> 	counter->limit = (unsigned long long)LLONG_MAX;
>> +	counter->parent = parent;
>> }
>>
>> int res_counter_charge_locked(struct res_counter *counter, unsigned long val)
>> @@ -36,10 +37,26 @@ int res_counter_charge(struct res_counter *counter, unsigned long
val)
>> {
>> 	int ret;
>> 	unsigned long flags;
>> +	struct res_counter *c, *unroll_c;
>> +
>> +	local_irq_save(flags);
>> +	for (c = counter; c != NULL; c = c->parent) {
>> +		spin_lock(&c->lock);
>> +		ret = res_counter_charge_locked(c, val);
>> +		spin_unlock(&c->lock);
>> +		if (ret < 0)
>> +			goto unroll;
>
> We'd like to know which resource counter failed to allow charging, so that we
> can reclaim from that mem_res_cgroup.
>
>> +	}
>> +	local_irq_restore(flags);
>> +	return 0;
>>
>> -	spin_lock_irqsave(&counter->lock, flags);
>> -	ret = res_counter_charge_locked(counter, val);
>> -	spin_unlock_irqrestore(&counter->lock, flags);
>> +unroll:
>> +	for (unroll_c = counter; unroll_c != c; unroll_c = unroll_c->parent) {
>> +		spin_lock(&unroll_c->lock);
>> +		res_counter_uncharge_locked(unroll_c, val);
>> +		spin_unlock(&unroll_c->lock);
>> +	}
>> +	local_irq_restore(flags);
>> 	return ret;
>> }
>>
>> @@ -54,10 +71,15 @@ void res_counter_uncharge_locked(struct res_counter *counter,
unsigned long val)
>> void res_counter_uncharge(struct res_counter *counter, unsigned long val)
>> {
>> 	unsigned long flags;
>> +	struct res_counter *c;
>>

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>> -	spin_lock_irqsave(&counter->lock, flags);
>> -	res_counter_uncharge_locked(counter, val);
>> -	spin_unlock_irqrestore(&counter->lock, flags);
>> +	local_irq_save(flags);
>> +	for (c = counter; c != NULL; c = c->parent) {
>> +		spin_lock(&c->lock);
>> +		res_counter_uncharge_locked(c, val);
>> +		spin_unlock(&c->lock);
>> +	}
>> +	local_irq_restore(flags);
>> }
>>
>>
>> diff --git a/mm/memcontrol.c b/mm/memcontrol.c
>> index e5c741a..61db79c 100644
>> --- a/mm/memcontrol.c
>> +++ b/mm/memcontrol.c
>> @@ -976,19 +976,22 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem, int node)
>> static struct cgroup_subsys_state *
>> mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
>> {
>> -	struct mem_cgroup *mem;
>> +	struct mem_cgroup *mem, *parent;
>> 	int node;
>>
>> 	if (unlikely((cont->parent) == NULL)) {
>> 		mem = &init_mem_cgroup;
>> 		init_mm.mem_cgroup = mem;
>> -	} else
>> +		parent = NULL;
>> +	} else {
>> 		mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
>> +		parent = mem_cgroup_from_cont(cont->parent);
>> +	}
>>
>> 	if (mem == NULL)
>> 		return ERR_PTR(-ENOMEM);
>>
>> -	res_counter_init(&mem->res);
>> +	res_counter_init(&mem->res, parent ? &parent->res : NULL);
>>
>> 	memset(&mem->info, 0, sizeof(mem->info));
>>
>
>

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

