
Subject: Supporting overcommit with the memory controller
Posted by Paul Menage on Thu, 06 Mar 2008 00:17:13 GMT
View Forum Message <> Reply to Message

We want to be able to use the memory controller in the following way,
and I'd like to know how practical this is currently, and will be in
the future.

Users are poor at determining how much memory their jobs will actually
use (partly due to poor estimation, partly due to high variance of
memory usage on some jobs). So, we want to overcommit machines, i.e.
we want the total limits granted to all cgroups add up to more than
the total size of the machine.

Our central scheduler will try to ensure that the jobs that are packed
on to the same machine are unlikely to all hit their peak usage at
once, so the machine as a whole is unlikely to actually run out of
memory. But sometimes it will be over-optimistic, and the machine will
run out of memory. We will try to ensure that there's a mixture of
high and low priority jobs on a machine, so that when the machine runs
out of memory the OOM killer can nuke the low-priority jobs and we can
reschedule them elsewhere.

The tricky bit is that we don't want this OOM process to impact the
high-priority jobs on the machine. I.e. even while the low-priority
job is OOM-killing itself, the high priority job shouldn't have any
difficulty in doing regular memory allocations. And if the
high-priority job gets a spike in its memory usage, we want the
low-priority jobs to get killed quickly and cleanly to free up memory
for the high-priority job, without stalling the high-priority job.

So for each job we need a (per-job configurable) amount of memory
that's essentially reserved for that job. That way the high-priority
job can carry on allocating from its reserved pool even while the
low-priority job is OOMing; the low-priority job can't touch the
reserved pool of the high-priority job.

But to make this more interesting, there are plenty of jobs that will
happily fill as much pagecache as they have available. Even a job
that's just writing out logs will continually expand its pagecache
usage without anything to stop it, and so just keeping the reserved
pool at a fixed amount of free memory will result in the job expanding
even if it doesn't need to. Therefore we want to be able to include in
the "reserved" pool, memory that's allocated by the job, but which can
be freed without causing performance penalties for the job. (e.g. log
files, or pages from a large on-disk data file with little access
locality of reference) So suppose we'd decided to keep a reserve of
200M for a particular job - if it had 200M of stale log file pages in

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=5612&goto=28025#msg_28025
https://new-forum.openvz.org/index.php?t=post&reply_to=28025
https://new-forum.openvz.org/index.php


the pagecache then we could treat those as the 200M reserve, and not
have to keep on expanding the reserve pool.

We've been approximating this reasonably well with a combination of
cpusets, fake numa, and some hacks to determine how many pages in each
node haven't been touched recently (this is a bit different from the
active/inactive distinction). By assigning physical chunks of memory
(fake numa nodes) to different jobs, we get the pre-reservation that
we need. But using fake numa is a little inflexible, so it would be
nice to be able to use a page-based memory controller.

Is this something that would be possible to set up with the current
memory controller? My impression is that this isn't quite possible
yet, but maybe I've not just thought hard enough. I suspect that we'd
need at least the addition of page refault data, and the ability to
pre-reserve pages for a group.

Paul
_______________________________________________
Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

