Subject: Re: [RFC] libcg: design and plans
Posted by Paul Menage on Wed, 05 Mar 2008 18:55:02 GMT

View Forum Message <> Reply to Message

On Wed, Mar 5, 2008 at 6:24 AM, Balbir Singh <balbir@linux.vnet.ibm.com> wrote:
> Paul Menage wrote:

> > 0On Wed, Mar 5, 2008 at 3:07 AM, Dhaval Giani <dhaval@linux.vnet.ibm.com> wrote:
>> OK. Hmm, I've not really thought about it. At first thought, it should

>> not be very difficult. Only thing | am not sure is the arbitrary

>> grouping of the groups (ok, a bit confusing).

>

> | suspect that the main form of composite grouping is going to be

> between parents and children. E.g. you might want to say things like:

>

> create_group(A, memory=1G, cpu=100)

> create_group(B, parent=A, memory=inherit, cpu=20)

> create_group(C, parent=A, memory=inherit, cpu=30)

>

> i.e. both B and C inherit/share their memory limit from their parent,

> but have their own CPU groups (child groups of their parent?)

>

No, we don't plan on doing that. What we plan on doing is

1. Specify the mount point for each controller

2. In the create group API, specify the name of the group and the various
parameters.

If for example CPU is mounted at /cpu and Memory at /mem

Then a specification for creation of group A would be of the form
create_group(A, cpu=100, memory=100M)

Then,

/cpu/A has shares set to 100 and /mem/A has memory.limit set to 100M
If you want to create subgroups under A, you specify

create_group(A/B, memory=200M, cpu=50)

That would create /cpu/A/B and /mem/A/B

Please note that memory and CPU hierarchy needs work in the kernel. The shares

and hierarchy support is pending. We need to make the res_counters
infrastructure aware of hierarchies.

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYVYVYV

Page 1 of 2 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=5597&goto=28021#msg_28021
https://new-forum.openvz.org/index.php?t=post&reply_to=28021
https://new-forum.openvz.org/index.php

| think there are two different kinds of sharing going on here:

- A and B each have individual limits, and you additionally want their
total usage to be capped by some parent limit. E.g. A and B each have
a 100MB memory limit, and you want their total combined usage to not
exceed 150MB. This kind of sharing has to be handled by the resource
counter abstraction

- you want A and B to be treated identically for the purposes of some
particular resource, e.g. you want a single CFS group to which all
threads in A and B are equal members, or a single memory cgroup for
all allocations by A or B, or the same device control table for A and

B (but you want A and B to be treated separately for some other
resource type). This can be handled in userspace in the way | outlined
above, and it would be good if libcg could handle the setup required
for this. It could also be done in the kernel with something like the
parent/child subsystem group inheritance that | also mentioned above,
if there was demand. But if so it should be a property of cgroups
rather than any individual resource controller, since it's a feature

that could be useful for all cgroups.

Paul

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

