
Subject: [PATCH 1/7] cgroup: fix and update documentation
Posted by Li Zefan on Mon, 18 Feb 2008 05:49:41 GMT
View Forum Message <> Reply to Message

Misc fixes and updates, make the doc consistent with current
cgroup implementation.

Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>

 Documentation/cgroups.txt | 65 +++++++++++++++++++++++---------------------
 1 files changed, 34 insertions(+), 31 deletions(-)

diff --git a/Documentation/cgroups.txt b/Documentation/cgroups.txt
index 42d7c4c..dfadd75 100644
--- a/Documentation/cgroups.txt
+++ b/Documentation/cgroups.txt
@@ -28,7 +28,7 @@ CONTENTS:
 4. Questions

 1. Control Groups
-==========
+=================

 1.1 What are cgroups ?

@@ -143,10 +143,10 @@ proliferation of such cgroups.

 Also lets say that the administrator would like to give enhanced network
 access temporarily to a student's browser (since it is night and the user
-wants to do online gaming :) OR give one of the students simulation
+wants to do online gaming :)) OR give one of the students simulation
 apps enhanced CPU power,

-With ability to write pids directly to resource classes, its just a
+With ability to write pids directly to resource classes, it's just a
 matter of :

 # echo pid > /mnt/network/<new_class>/tasks
@@ -227,10 +227,13 @@ Each cgroup is represented by a directory in the cgroup file system
 containing the following files describing that cgroup:

 - tasks: list of tasks (by pid) attached to that cgroup
- - notify_on_release flag: run /sbin/cgroup_release_agent on exit?
+ - releasable flag: cgroup currently removeable?
+ - notify_on_release flag: run the release agent on exit?
+ - release_agent: the path to use for release notifications (this file
+ exists in the top cgroup only)

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2371
https://new-forum.openvz.org/index.php?t=rview&th=5492&goto=27502#msg_27502
https://new-forum.openvz.org/index.php?t=post&reply_to=27502
https://new-forum.openvz.org/index.php

 Other subsystems such as cpusets may add additional files in each
-cgroup dir
+cgroup dir.

 New cgroups are created using the mkdir system call or shell
 command. The properties of a cgroup, such as its flags, are
@@ -257,7 +260,7 @@ performance.
 To allow access from a cgroup to the css_sets (and hence tasks)
 that comprise it, a set of cg_cgroup_link objects form a lattice;
 each cg_cgroup_link is linked into a list of cg_cgroup_links for
-a single cgroup on its cont_link_list field, and a list of
+a single cgroup on its cgrp_link_list field, and a list of
 cg_cgroup_links for a single css_set on its cg_link_list.

 Thus the set of tasks in a cgroup can be listed by iterating over
@@ -272,7 +275,7 @@ for cgroups, with a minimum of additional kernel code.

 *** notify_on_release is disabled in the current patch set. It will be
-*** reactivated in a future patch in a less-intrusive manner
+*** reactivated in a future patch in a less-intrusive manner.

 If the notify_on_release flag is enabled (1) in a cgroup, then
 whenever the last task in the cgroup leaves (exits or attaches to
@@ -360,8 +363,8 @@ Now you want to do something with this cgroup.

 In this directory you can find several files:
 # ls
-notify_on_release release_agent tasks
-(plus whatever files are added by the attached subsystems)
+notify_on_release releasable tasks
+(plus whatever files added by the attached subsystems)

 Now attach your shell to this cgroup:
 # /bin/echo $$ > tasks
@@ -404,19 +407,13 @@ with a subsystem id which will be assigned by the cgroup system.
 Other fields in the cgroup_subsys object include:

 - subsys_id: a unique array index for the subsystem, indicating which
- entry in cgroup->subsys[] this subsystem should be
- managing. Initialized by cgroup_register_subsys(); prior to this
- it should be initialized to -1
+ entry in cgroup->subsys[] this subsystem should be managing.

-- hierarchy: an index indicating which hierarchy, if any, this
- subsystem is currently attached to. If this is -1, then the
- subsystem is not attached to any hierarchy, and all tasks should be

Page 2 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- considered to be members of the subsystem's top_cgroup. It should
- be initialized to -1.
+- name: should be initialized to a unique subsystem name. Should be
+ no longer than MAX_CGROUP_TYPE_NAMELEN.

-- name: should be initialized to a unique subsystem name prior to
- calling cgroup_register_subsystem. Should be no longer than
- MAX_CGROUP_TYPE_NAMELEN
+- early_init: indicate if the subsystem needs early initialization
+ at system boot.

 Each cgroup object created by the system has an array of pointers,
 indexed by subsystem id; this pointer is entirely managed by the
@@ -434,8 +431,6 @@ situation.
 See kernel/cgroup.c for more details.

 Subsystems can take/release the cgroup_mutex via the functions
-cgroup_lock()/cgroup_unlock(), and can
-take/release the callback_mutex via the functions
 cgroup_lock()/cgroup_unlock().

 Accessing a task's cgroup pointer may be done in the following ways:
@@ -444,7 +439,7 @@ Accessing a task's cgroup pointer may be done in the following ways:
 - inside an rcu_read_lock() section via rcu_dereference()

 3.3 Subsystem API

+-----------------

 Each subsystem should:

@@ -455,7 +450,8 @@ Each subsystem may export the following methods. The only mandatory
 methods are create/destroy. Any others that are null are presumed to
 be successful no-ops.

-struct cgroup_subsys_state *create(struct cgroup *cont)
+struct cgroup_subsys_state *create(struct cgroup_subsys *ss,
+				 struct cgroup *cgrp)
 (cgroup_mutex held by caller)

 Called to create a subsystem state object for a cgroup. The
@@ -470,7 +466,7 @@ identified by the passed cgroup object having a NULL parent (since
 it's the root of the hierarchy) and may be an appropriate place for
 initialization code.

-void destroy(struct cgroup *cont)
+void destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
 (cgroup_mutex held by caller)

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 The cgroup system is about to destroy the passed cgroup; the subsystem
@@ -481,7 +477,14 @@ cgroup->parent is still valid. (Note - can also be called for a
 newly-created cgroup if an error occurs after this subsystem's
 create() method has been called for the new cgroup).

-int can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
+void pre_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp);
+(cgroup_mutex held by caller)
+
+Called before checking the reference count on each subsystem. This may
+be useful for subsystems which have some extra references even if
+there are not tasks in the cgroup.
+
+int can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
 	 struct task_struct *task)
 (cgroup_mutex held by caller)

@@ -492,8 +495,8 @@ unspecified task can be moved into the cgroup. Note that this isn't
 called on a fork. If this method returns 0 (success) then this should
 remain valid while the caller holds cgroup_mutex.

-void attach(struct cgroup_subsys *ss, struct cgroup *cont,
-	 struct cgroup *old_cont, struct task_struct *task)
+void attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
+	 struct cgroup *old_cgrp, struct task_struct *task)

 Called after the task has been attached to the cgroup, to allow any
 post-attachment activity that requires memory allocations or blocking.
@@ -505,9 +508,9 @@ registration for all existing tasks.

 void exit(struct cgroup_subsys *ss, struct task_struct *task)

-Called during task exit
+Called during task exit.

-int populate(struct cgroup_subsys *ss, struct cgroup *cont)
+int populate(struct cgroup_subsys *ss, struct cgroup *cgrp)

 Called after creation of a cgroup to allow a subsystem to populate
 the cgroup directory with file entries. The subsystem should make
@@ -516,7 +519,7 @@ include/linux/cgroup.h for details). Note that although this
 method can return an error code, the error code is currently not
 always handled well.

-void post_clone(struct cgroup_subsys *ss, struct cgroup *cont)
+void post_clone(struct cgroup_subsys *ss, struct cgroup *cgrp)

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 Called at the end of cgroup_clone() to do any paramater
 initialization which might be required before a task could attach. For
--
1.5.4.rc3

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

