
Subject: Re: [RFC][PATCH 4/4]: Enable cloning PTY namespaces
Posted by Pavel Emelianov on Wed, 06 Feb 2008 17:06:15 GMT
View Forum Message <> Reply to Message

Serge E. Hallyn wrote:
> Quoting Pavel Emelyanov (xemul@openvz.org):
>> Serge E. Hallyn wrote:
>>> Quoting Pavel Emelyanov (xemul@openvz.org):
>>>> Serge E. Hallyn wrote:
>>>>> Quoting Pavel Emelyanov (xemul@openvz.org):
>>>>>> sukadev@us.ibm.com wrote:
>>>>>>> From: Sukadev Bhattiprolu <sukadev@us.ibm.com>
>>>>>>> Subject: [RFC][PATCH 4/4]: Enable cloning PTY namespaces
>>>>>>>
>>>>>>> Enable cloning PTY namespaces.
>>>>>>>
>>>>>>> TODO:
>>>>>>> 	This version temporarily uses the clone flag '0x80000000' which
>>>>>>> 	is unused in mainline atm, but used for CLONE_IO in -mm.
>>>>>>> 	While we must extend clone() (urgently) to solve this, it hopefully
>>>>>>> 	does not affect review of the rest of this patchset.
>>>>>>>
>>>>>>> Changelog:
>>>>>>> 	- Version 0: Based on earlier versions from Serge Hallyn and
>>>>>>> 	 Matt Helsley.
>>>>>>>
>>>>>>> Signed-off-by: Sukadev Bhattiprolu <sukadev@us.ibm.com>
>>>>>>> ---
>>>>>>> fs/devpts/inode.c | 84 +++++++++++++++++++++++++++++++++++++++-------
>>>>>>> include/linux/devpts_fs.h | 52 ++++++++++++++++++++++++++++
>>>>>>> include/linux/init_task.h | 1
>>>>>>> include/linux/nsproxy.h | 2 +
>>>>>>> include/linux/sched.h | 2 +
>>>>>>> kernel/fork.c | 2 -
>>>>>>> kernel/nsproxy.c | 17 ++++++++-
>>>>>>> 7 files changed, 146 insertions(+), 14 deletions(-)
>>>>>>>
>>>>>>> Index: linux-2.6.24/fs/devpts/inode.c
>>>>>>>
===
>>>>>>> --- linux-2.6.24.orig/fs/devpts/inode.c	2008-02-05 19:16:39.000000000 -0800
>>>>>>> +++ linux-2.6.24/fs/devpts/inode.c	2008-02-05 20:27:41.000000000 -0800
>>>>>>> @@ -25,18 +25,25 @@
>>>>>>> #define DEVPTS_SUPER_MAGIC 0x1cd1
>>>>>>>
>>>>>>> extern int pty_limit;		/* Config limit on Unix98 ptys */
>>>>>>> -static DEFINE_IDR(allocated_ptys);
>>>>>>> static DECLARE_MUTEX(allocated_ptys_lock);

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=5367&goto=27005#msg_27005
https://new-forum.openvz.org/index.php?t=post&reply_to=27005
https://new-forum.openvz.org/index.php

>>>>>>> +static struct file_system_type devpts_fs_type;
>>>>>>> +
>>>>>>> +struct pts_namespace init_pts_ns = {
>>>>>>> +	.kref = {
>>>>>>> +		.refcount = ATOMIC_INIT(2),
>>>>>>> +	},
>>>>>>> +	.allocated_ptys = IDR_INIT(init_pts_ns.allocated_ptys),
>>>>>>> +	.mnt = NULL,
>>>>>>> +};
>>>>>>>
>>>>>>> static inline struct idr *current_pts_ns_allocated_ptys(void)
>>>>>>> {
>>>>>>> -	return &allocated_ptys;
>>>>>>> +	return ¤t->nsproxy->pts_ns->allocated_ptys;
>>>>>>> }
>>>>>>>
>>>>>>> -static struct vfsmount *devpts_mnt;
>>>>>>> static inline struct vfsmount *current_pts_ns_mnt(void)
>>>>>>> {
>>>>>>> -	return devpts_mnt;
>>>>>>> +	return current->nsproxy->pts_ns->mnt;
>>>>>>> }
>>>>>>>
>>>>>>> static struct {
>>>>>>> @@ -59,6 +66,42 @@ static match_table_t tokens = {
>>>>>>> 	{Opt_err, NULL}
>>>>>>> };
>>>>>>>
>>>>>>> +struct pts_namespace *new_pts_ns(void)
>>>>>>> +{
>>>>>>> +	struct pts_namespace *ns;
>>>>>>> +
>>>>>>> +	ns = kmalloc(sizeof(*ns), GFP_KERNEL);
>>>>>>> +	if (!ns)
>>>>>>> +		return ERR_PTR(-ENOMEM);
>>>>>>> +
>>>>>>> +	ns->mnt = kern_mount_data(&devpts_fs_type, ns);
>>>>>> You create a circular references here - the namespace
>>>>>> holds the vfsmnt, the vfsmnt holds a superblock, a superblock
>>>>>> holds the namespace.
>>>>> Hmm, yeah, good point. That was probably in my original version last
>>>>> year, so my fault not Suka's. Suka, would it work to have the
>>>>> sb->s_info point to the namespace but not grab a reference, than have
>>>> If you don't then you may be in situation, when this devpts
>>>> is mounted from userspace and in case the namespace is dead
>>>> superblock will point to garbage... Superblock MUST hold the
>>>> namespace :)
>>> But when the ns is freed sb->s_info would be NULL. Surely the helpers

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>> can be made to handle that safely?
>> Hm... How do we find the proper superblock? Have a reference on
>> it from the namespace? I'm afraid it will be easy to resolve the
>> locking issues here.
>>
>> I propose another scheme - we simply don't have ANY references
>> from namespace to superblock/vfsmount, but get the current
>> namespace in devpts_get_sb() and put in devpts_free_sb().
>
> But then it really does become impossible to use a /dev/pts from another
> namespace, right?

Right. I already see this from another thread :) Let's drop this one.

>>>>> free_pts_ns() null out its sb->s_info, i.e. something like
>>>>>
>>>>> void free_pts_ns(struct kref *ns_kref)
>>>>> {
>>>>> struct pts_namespace *ns;
>>>>> struct super_block *sb;
>>>>>
>>>>> ns = container_of(ns_kref, struct pts_namespace, kref);
>>>>> BUG_ON(ns == &init_pts_ns);
>>>>> sb = ns->mnt->mnt_sb;
>>>>>
>>>>> mntput(ns->mnt);
>>>>> sb->s_info = NULL;
>>>>>
>>>>> /*
>>>>> * TODO:
>>>>> * idr_remove_all(&ns->allocated_ptys); introduced in
>>>>> .6.23
>>>>> */
>>>>> idr_destroy(&ns->allocated_ptys);
>>>>> kfree(ns);
>>>>> }
>>>>>
>>>>>
	>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

