Subject: Re: [PATCH 2.6.24-rc8-mm1 14/15] (RFC) IPC/semaphores:
prepare semundo code to work on another task
Posted by Pierre Peiffer on Fri, 01 Feb 2008 12:09:48 GMT

View Forum Message <> Reply to Message

Serge E. Hallyn wrote:

> Quoting Pierre Peiffer (pierre.peiffer@bull.net):

>>

>> Serge E. Hallyn wrote:

>>> Quoting pierre.peiffer@bull.net (pierre.peiffer@bull.net):

>>>> From: Pierre Peiffer <pierre.peiffer@bull.net>

>>>>

>>>> |n order to modify the semundo-list of a task from procfs, we must be able to
>>>> work on any target task.

>>>> But all the existing code playing with the semundo-list, currently works
>>>> only on the 'current’ task, and does not allow to specify any target task.
>>>>

>>>> This patch changes all these routines to allow them to work on a specified
>>>> task, passed in parameter, instead of current.

>>>>

>>>> This is mainly a preparation for the semundo_write() operation, on the
>>>> [proc/<pid>/semundo file, as provided in the next patch.

>>>>

>>>> Signed-off-by: Pierre Peiffer <pierre.peiffer@bull.net>

>>>> -

>>>>

>>>> jpc/sem.C | 90 ++++++++++++ttt++tttt bbb
>>>> 1 file changed, 68 insertions(+), 22 deletions(-)

>>>>

>>>> |Index: b/ipc/sem.c

>>>> --- afipc/sem.c

>>>> +++ b/ipc/sem.c

>>>> @@ -1017,8 +1017,9 @@ asmlinkage long sys_semctl (int semid, i
>>>>

>>>>

>>>> [* |f the task doesn't already have a undo_list, then allocate one

>>>> - * here. We guarantee there is only one thread using this undo list,
>>>> - * gand current is THE ONE

>>>> + * here.

>>>> + * The target task (tsk) is current in the general case, except when
>>>> + * gccessed from the procfs (ie when writting to /proc/<pid>/semundo)
>>>> *

>>>> * |f this allocation and assignment succeeds, but later

>>>> * portions of this code falil, there is no need to free the sem_undo_list.
>>>> @@ -1026,22 +1027,60 @@ asmlinkage long sys_semctl (int semid, i
>>>> * gt exit time.

>>>> %

Page 1 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1551
https://new-forum.openvz.org/index.php?t=rview&th=5301&goto=26815#msg_26815
https://new-forum.openvz.org/index.php?t=post&reply_to=26815
https://new-forum.openvz.org/index.php

>>>> * This can block, so callers must hold no locks.

>S>>> + %

>>>> + * Note: task _lock is used to synchronize 1. several possible concurrent
>>>> + * creations and 2. the free of the undo_list (done when the task using it
>>>> + * exits). In the second case, we check the PF_EXITING flag to not create
>>>> + * gn undo_list for a task which has exited.

>>>> + * |f there already is an undo_list for this task, there is no need

>>>> + * t0 held the task-lock to retrieve it, as the pointer can not change
>>>> + * gfterwards.

>>>> *f

>>>> -static inline int get_undo_list(struct sem_undo_list **undo_listp)

>>>> +gtatic inline int get_undo_list(struct task_struct *tsk,

>>>>+ struct sem_undo_list **ulp)

>>>>

>>>> - struct sem_undo_list *undo_list;

>>>> + if (tsk->sysvsem.undo_list == NULL) {

>>>> + struct sem_undo_list *undo_list;

>>> Hmm, this is weird. If there was no undo_list and

>>> tskl=current, you set the refcnt to 2. But if there was an

>>> undo list and tsk!=current, where do you inc the refcnt?

>>>

>> | inc it outside this function, as | don't call get_undo_list() if there is an

>> undo_list.

>> This appears most clearly in the next patch, in semundo_open() for example.
>

> Ok, so however unlikely, there is a flow that could cause you a problem:

> T2 calls semundo_open() for T1. T1 does not yet have a semundolist.

> T2.semundo_open() calls get_undo_list, just then T1 creats its own

> semundo_list. T2 comes to top of get_undo_list() and see

> tsk->sysvsem.undo_list != NULL, simply returns a pointer to the

> undo_list. Now you never increment the count.

>

Right.

And yesterday, with more testing in the corners, I've found another issue: if |
use /proc/self/lsemundo, | don't have tsk != current and the refcnt is wrong too.

Thanks for finding this !
P.

>>>> - undo_list = current->sysvsem.undo_list;

>>>> - jf (lundo_list) {

>>>> - undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
>>>> + [* we must alloc a new one */

>>>> + undo_list = kmalloc(sizeof(*undo_list), GFP_KERNEL);
>>>> if (undo_list == NULL)

>>>> return -ENOMEM,;

Page 2 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>>> +
>>>> + task lock(tsk);

>>>> +

>>>> + [* check again if there is an undo_list for this task */
>>>> + |f (tsk->sysvsem.undo_list) {

>>>> + f (tsk |= current)

>>>>+ atomic_inc(&tsk->sysvsem.undo_list->refcnt);

>>>> + task_unlock(tsk);

>>>> + kfree(undo_list);

>>>> + goto out;

>>>> + }

>>>> +

>>>> spin_lock_init(&undo_list->lock);

>>>> - atomic_set(&undo_list->refent, 1);

>>>> - undo_list->ns = get_ipc_ns(current->nsproxy->ipc_ns);
>>>> - current->sysvsem.undo_list = undo_list;

>>>> + [*

>>>>+ *[ftsk is not current (meaning that current is creating
>>>>+ * asemundo_list for a target task through procfs), and if
>>>>+ *jt's not being exited then refcnt must be 2: the target
>>>> + *task tsk + current.

>>>> + X

>>>> + f (tsk == current)

>>>>+ atomic_set(&undo_list->refcnt, 1);

>>>> + else if (I(tsk->flags & PF_EXITING))

>>>>+ atomic_set(&undo_list->refcnt, 2);

>>>> + else {

>>>> + task_unlock(tsk);

>>>> + kfree(undo_list);

>>>> + return -EINVAL;

>>>> + }

>>>> + undo_list->ns = get_ipc_ns(tsk->nsproxy->ipc_ns);
>>>> + undo_list->proc_list = NULL;

>>>> + tsk->sysvsem.undo_list = undo_list;

>>>> + task_unlock(tsk);

>>>>]

>>>> - *yndo_listp = undo_list;

>>>> +0ut:

>>>> + *ulp = tsk->sysvsem.undo_list;

>>>> return O;

>>>> }

>>>>

>>>> @@ -1065,17 +1104,12 @@ static struct sem_undo *lookup_undo(stru
>>>> return un;

>>>>

>>>>

>>>> -static struct sem_undo *find_undo(struct ipc_namespace *ns, int semid)
>>>> +gtatic struct sem_undo *find_undo(struct sem_undo_list *ulp, int semid)

Page 3 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>>>

>>>> gstruct sem_array *sma,;

>>>> - struct sem_undo_list *ulp;

>>>> struct sem_undo *un, *new;

>>>> + struct ipc_namespace *ns;

>>>> int nsems;

>>>> - nt error;

>>>> -

>>>> - error = get_undo_list(&ulp);

>>>> - if (error)

>>>> - return ERR_PTR(error);

>>>>

>>>> spin_lock(&ulp->lock);

>>>> un = lookup_undo(ulp, semid);

>>>> @@ -1083,6 +1117,8 @@ static struct sem_undo *find_undo(struct
>>>> f (likely(un!'=NULL))

>>>> goto out;

>>>>

>>>> +ns = ulp->ns;

>>>> +

>>>> [* no undo structure around - allocate one. */
>>>> sma = sem_lock check(ns, semid);

>>>> if (IS_ERR(sma))

>>>> @@ -1133,6 +1169,7 @@ asmlinkage long sys_semtimedop(int semid
>>>> struct sem_array *sma;

>>>> struct sembuf fast_sops[SEMOPM_FAST];
>>>> struct sembuf* sops = fast_sops, *sop;

>>>> + struct sem_undo_list *ulp;

>>>> struct sem_undo *un;

>>>> int undos = 0, alter = 0, max;

>>>> struct sem_gueue queue;

>>>> @@ -1177,9 +1214,13 @@ asmlinkage long sys_semtimedop(int semid
>>>> alter = 1;

>>>>]

>>>>

>>>> + error = get_undo_list(current, &ulp);

>>>> + if (error)

>>>> + goto out_free;

>>>> +

>>>> retry_undos:

>>>> if (undos) {

>>>> - un = find_undo(ns, semid);

>>>> + un = find_undo(ulp, semid);

>>>> if (IS_ERR(un)) {

>>>> error = PTR_ERR(un);

>>>> goto out_free;

>>>> @@ -1305,7 +1346,7 @@ int copy_semundo(unsigned long clone_fla
>>>> int error;

Page 4 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>>>
>>>> f (clone_flags & CLONE_SYSVSEM) {

>>>> - error = get_undo_list(&undo_list);

>>>> + error = get_undo_list(current, &undo_list);

>>>> if (error)

>>>> return error;

>>>> atomic_inc(&undo_list->refcnt);

>>>> @@ -1405,10 +1446,15 @@ next_entry:

>>>> kfree(undo_list);

>>>>

>>>>

>>>> -[* called from do_exit() */

>>>> +/* exit_sem: called from do_exit()

>>>> + * task_lock is used to synchronize with get_undo_list()
>>> Ok | had to think about this again. I'd like the comment
>>> here to point out that the task _lock here acts as a barrier
>>> petween the prior setting of PF_EXITING and the undo_list
>>> being freed here, so that get_undo_list() will either see
>>> PF_EXITING is NOT in the tsk->flags, in which case it will
>>> insert the undo_list before the task_lock() is grabbed here,
>>> and with count=2, so that it gets correctly put here in

>>> exit_sem, or it will see PF_EXITING set and cancel the
>>> undo_list it was creating.

>>>

>> Yep, | will add this to clarify this point.

>>

>> Thanks Serge.

>>

>> P,

>>

>>>> + %/

>>>> void exit_sem(struct task_struct *tsk)

>>>>

>>>> - struct sem_undo_list *ul = tsk->sysvsem.undo_list;
>>>> + struct sem_undo_list *ul;

>>>> + task_lock(tsk);

>>>> + ul = tsk->sysvsem.undo_list;

>>>> + task_unlock(tsk);

>>>> if (ul) {

>>>> rcu_assign_pointer(tsk->sysvsem.undo_list, NULL);
>>>> synchronize_rcu();

>>>>

>>>> -

>>>> Pierre Peiffer

>>>>

>>>> Containers mailing list
>>>> Containers@lists.linux-foundation.org
>>>> https://lists.linux-foundation.org/mailman/listinfo/containers

Page 5 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>>

>> -

>> Pierre Peiffer
>

>

Pierre Peiffer

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 6 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

