Subject: Re: [RFC] Default child of a cgroup Posted by Dhaval Giani on Fri, 01 Feb 2008 04:16:55 GMT

View Forum Message <> Reply to Message

```
On Thu, Jan 31, 2008 at 09:37:42PM +0100, Peter Zijlstra wrote:
> On Thu, 2008-01-31 at 23:39 +0530, Balbir Singh wrote:
> > Srivatsa Vaddagiri wrote:
> > > Hi,
>>> As we were implementing multiple-hierarchy support for CPU
>> controller, we hit some oddities in its implementation, partly related
>>> to current cgroups implementation. Peter and I have been debating on the
>> exact solution and I thought of bringing that discussion to lkml.
>>>
>>> Consider the cgroup filesystem structure for managing cpu resource.
>>>
>> # mount -t cgroup -ocpu.cpuacct none /cgroup
>>> # mkdir /cgroup/A
>>> # mkdir /cgroup/B
>>> # mkdir /cgroup/A/a1
>>> will result in:
>>>
>> /cgroup
       |----<tasks>
>>>
       |----<cpuacct.usage>
>>>
        |----<cpu.shares>
>>>
>>>
       |----[A]
>>>
>>>
           |----<tasks>
           |----<cpuacct.usage>
>>>
           |----<cpu.shares>
>>>
>>>
           |---[a1]
>>>
              |----<tasks>
>>>
              |----<cpuacct.usage>
>>>
               |----<cpu.shares>
>>>
>>>
>>>
       |----[B]
>>>
           |----<tasks>
>>>
           |----<cpuacct.usage>
>>>
           |----<cpu.shares>
>>>
>>>
>>>
>>>
>>> Here are some questions that arise in this picture:
>>>
```

```
>>> 1. What is the relationship of the task-group in A/tasks with the
       task-group in A/a1/tasks? In otherwords do they form siblings
       of the same parent A?
>>>
>>>
> >
>> I consider them to be the same relationship between directories and files.
>> A/tasks are siblings of A/a1 and A/other children, *but* the entities of
> > interest are A and A/a1.
> >
>>> 2. Somewhat related to the above question, how much resource should the
       task-group A/a1/tasks get in relation to A/tasks? Is it 1/2 of parent
       A's share or 1/(1 + N) of parent A's share (where N = number of tasks
       in A/tasks)?
>>>
>>>
>> I propose that it gets 1/2 of the bandwidth, here is why
>> 1. Assume that a task in A/tasks forks 1000 children, what happens to the
>> bandwidth of A/a1's tasks then? We have no control over how many tasks can be
>> created on A/tasks as a consequence of moving one task to A/tasks. Doing it the
> > other way would mean, that A/a1/tasks will get 1/1001 of the bandwidth (sounds
> > very unfair and prone to Denial of Service/Fairness)
> And I oppose this, it means not all siblings are treated equal. Also, I
> miss the story of the 'hidden' group here. The biggest objection is this
> hidden group with no direct controls.
> My proposal is to make it a hard constraint, either a group has task
> children or a group has group children, but not mixed. That keeps the
> interface explicit and doesn't hide the tricks we play.
That is one solution. Otherwise you provide the controls for the hidden
group. (Namely the shares and the rt_ratio). I've been experimenting
with this approach recently.
<snip>
>> Note that user cannot create subdirectories under def child with this
>> scheme! I am also not sure what impact this will have on other resources
>> > like cpusets ..
>>>
I'm not sure why it would affect other resources? The def_child is not
exposed to the cgroup filesystem. Could someone please explain it to me?
```

> >

>> Which means we'll need special logic in the cgroup filesystem to handle

> > def_child. Not a very good idea.	
>	
> agreed.	
regards,	
Dhaval	
Containers mailing list	
Containers@lists.linux-foundation.org	
https://lists.linux-foundation.org/mailman/listinfo/containers	