
Subject: Re: [PATCH 8/9] signal: Drop signals before sending them to init.
Posted by Oleg Nesterov on Tue, 18 Dec 2007 12:22:41 GMT
View Forum Message <> Reply to Message

On 12/17, Eric W. Biederman wrote:
>
> So I would have no problem with a definition said signals
> will be dropped when sent to init if at the time they are
> sent the signal is SIG_DFL and unblocked.

Great!

> > But this can happen with
> > your patch as well. sig_init_drop() returns false if we have a handler,
> > but this races with sys_rt_sigaction() which can set SIG_DFL, so init
> > could be killed.
>
> I am checking under the sighand lock so we should not race,
> at least not internally to the kernel.

Yes, but as soon as we drop ->siglock /sbin/init can set SIG_DFL before
noticing the signal.

> > IOW, I still have a strong feeling that this patch
> >
> > 	http://marc.info/?l=linux-kernel&m=118753610515859
> >
> > is better, and more correct. That said, this all is very subjective,
> > I can't "prove" this of course.
>
> My fundamental problem with that patch is that it drops signals
> after we have started processing them, and it modifies the code
> of an optimization.
>
> To have a clean definition and clean semantics I think we need
> to drop the signal earlier in the path. Which is what I
> really object to in your patch.

Hmm. Could you look at this patch again? I'm attaching it at the end.
(re-diffed against the current code)

It modifies sig_ignored(), so we drop the signal before we started
processing. And in fact it is more "optimized", because we don't need
to check sa_handler twice.

Btw. I don't think we should change force_sig_info(). Suppose that init
blocks/ignores SIGSEGV and do_page_fault() does force_sig_info_fault().
In that case it is better to die explicitely than go into the endless

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=691
https://new-forum.openvz.org/index.php?t=rview&th=4953&goto=25235#msg_25235
https://new-forum.openvz.org/index.php?t=post&reply_to=25235
https://new-forum.openvz.org/index.php

loop.

Oleg.

--- t/kernel/signal.c~INITSIGS	2007-08-19 14:39:35.000000000 +0400
+++ t/kernel/signal.c	2007-08-19 19:00:27.000000000 +0400
@@ -39,11 +39,33 @@

 static struct kmem_cache *sigqueue_cachep;

+static int sig_init_ignore(struct task_struct *tsk)
+{
+	if (likely(!is_container_init(tsk->group_leader)))
+		return 0;
+
+	// ---------------- Multiple pid namespaces ----------------
+	// if (current is from tsk's parent pid_ns && !in_interrupt())
+	//	return 0;
+
+	return 1;
+}
+
+static int sig_task_ignore(struct task_struct *tsk, int sig)
+{
+	void __user * handler = tsk->sighand->action[sig-1].sa.sa_handler;
+
+	if (handler == SIG_IGN)
+		return 1;
+
+	if (handler != SIG_DFL)
+		return 0;
+
+	return sig_kernel_ignore(sig) || sig_init_ignore(tsk);
+}

 static int sig_ignored(struct task_struct *t, int sig)
 {
-	void __user * handler;
-
 	/*
 	 * Tracers always want to know about signals..
 	 */
@@ -58,10 +82,7 @@ static int sig_ignored(struct task_struc
 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 		return 0;

-	/* Is it explicitly or implicitly ignored? */
-	handler = t->sighand->action[sig-1].sa.sa_handler;

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-	return handler == SIG_IGN ||
-		(handler == SIG_DFL && sig_kernel_ignore(sig));
+	return sig_task_ignore(t, sig);
 }

 /*
@@ -566,6 +587,9 @@ static void handle_stop_signal(int sig,
 		 */
 		return;

+	if (sig_init_ignore(p))
+		return;
+
 	if (sig_kernel_stop(sig)) {
 		/*
 		 * This is a stop signal. Remove SIGCONT from all queues.
@@ -1786,12 +1810,6 @@ relock:
 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
 			continue;

-		/*
-		 * Global init gets no signals it doesn't want.
-		 */
-		if (is_global_init(current))
-			continue;
-
 		if (sig_kernel_stop(signr)) {
 			/*
 			 * The default action is to stop all threads in
@@ -2303,8 +2316,7 @@ int do_sigaction(int sig, struct k_sigac
 		 * (for example, SIGCHLD), shall cause the pending signal to
 		 * be discarded, whether or not it is blocked"
 		 */
-		if (act->sa.sa_handler == SIG_IGN ||
-		 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
+		if (sig_task_ignore(current, sig)) {
 			struct task_struct *t = current;
 			sigemptyset(&mask);
 			sigaddset(&mask, sig);

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

