Subject: Re: [PATCH 8/9] signal: Drop signals before sending them to init.
Posted by Oleg Nesterov on Tue, 18 Dec 2007 12:22:41 GMT

View Forum Message <> Reply to Message

On 12/17, Eric W. Biederman wrote:

>

> So | would have no problem with a definition said signals
> will be dropped when sent to init if at the time they are

> sent the signal is SIG_DFL and unblocked.

Great!

> > But this can happen with

> > your patch as well. sig_init_drop() returns false if we have a handler,
> > put this races with sys_rt_sigaction() which can set SIG_DFL, so init
> > could be killed.

>

> | am checking under the sighand lock so we should not race,

> at least not internally to the kernel.

Yes, but as soon as we drop ->siglock /sbin/init can set SIG_DFL before
noticing the signal.

> > |OW, | still have a strong feeling that this patch

> >

> > http://marc.info/?I=linux-kernel&m=118753610515859

> >

> > s better, and more correct. That said, this all is very subjective,
> > | can't "prove" this of course.

>

> My fundamental problem with that patch is that it drops signals
> after we have started processing them, and it modifies the code
> of an optimization.

>

> To have a clean definition and clean semantics | think we need
> to drop the signal earlier in the path. Which is what |

> really object to in your patch.

Hmm. Could you look at this patch again? I'm attaching it at the end.
(re-diffed against the current code)

It modifies sig_ignored(), so we drop the signal before we started
processing. And in fact it is more "optimized", because we don't need
to check sa_handler twice.

Btw. | don't think we should change force_sig_info(). Suppose that init
blocks/ignores SIGSEGV and do_page_fault() does force_sig_info_fault().
In that case it is better to die explicitely than go into the endless

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=691
https://new-forum.openvz.org/index.php?t=rview&th=4953&goto=25235#msg_25235
https://new-forum.openvz.org/index.php?t=post&reply_to=25235
https://new-forum.openvz.org/index.php

loop.
Oleg.

--- t/kernel/signal.c~INITSIGS 2007-08-19 14:39:35.000000000 +0400
+++ t/kernel/signal.c 2007-08-19 19:00:27.000000000 +0400

@@ -39,11 +39,33 @@
static struct kmem_cache *sigqueue_cachep;

+static int sig_init_ignore(struct task_struct *tsk)

+H

+ if (likely('is_container_init(tsk->group_leader)))

+ return O;

+

+] - Multiple pid namespaces ----------------

+ /1 if (current is from tsk's parent pid_ns && !in_interrupt())
+ // return O;

+

+ return 1;

+}

+

+static int sig_task_ignore(struct task_struct *tsk, int sig)
H

+void __user * handler = tsk->sighand->action[sig-1].sa.sa_handler;
+

+if (handler == SIG_IGN)

+ return 1;

+

+if (handler != SIG_DFL)

+ return O;

+

+ return sig_kernel_ignore(sig) || sig_init_ignore(tsk);

+}

static int sig_ignored(struct task_struct *t, int sig)

{
-void __user * handler;
- .
* Tracers always want to know about signals..
*/
@@ -58,10 +82,7 @@ static int sig_ignored(struct task_struc
if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
return O;

- I* Is it explicitly or implicitly ignored? */
- handler = t->sighand->action[sig-1].sa.sa_handler;

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-return handler == SIG_IGN ||
- (handler == SIG_DFL && sig_kernel_ignore(sig));
+ return sig_task_ignore(t, sig);

}

/*

@@ -566,6 +587,9 @@ static void handle_stop_signal(int sig,
*/
return;

+ if (sig_init_ignore(p))
+ return;
+
if (sig_kernel_stop(sig)) {
/*
* This is a stop signal. Remove SIGCONT from all queues.
@@ -1786,12 +1810,6 @@ relock:
if (sig_kernel_ignore(signr)) /* Default is nothing. */
continue;

- x
* Global init gets no signals it doesn't want.
- %

if (is_global_init(current))

continue;

if (sig_kernel_stop(signr)) {
/*
* The default action is to stop all threads in
@@ -2303,8 +2316,7 @@ int do_sigaction(int sig, struct k_sigac
* (for example, SIGCHLD), shall cause the pending signal to
* be discarded, whether or not it is blocked"
*/
- if (act->sa.sa_handler == SIG_IGN ||
- (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
+ if (sig_task_ignore(current, sig)) {
struct task_struct *t = current;
sigemptyset(&mask);
sigaddset(&mask, sig);

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

