
Subject: Re: [PATCH] AB-BA deadlock in drop_caches sysctl (resend, the one sent
was for 2.6.18)
Posted by den on Tue, 04 Dec 2007 08:00:22 GMT
View Forum Message <> Reply to Message

Andrew Morton wrote:
> On Mon, 3 Dec 2007 16:52:47 +0300
> "Denis V. Lunev" <den@openvz.org> wrote:
>
>> There is a AB-BA deadlock regarding drop_caches sysctl. Here are the code
>> paths:
>>
>> drop_pagecache
>> spin_lock(&inode_lock);
>> invalidate_mapping_pages
>> try_to_release_page
>> ext3_releasepage
>> journal_try_to_free_buffers
>> __journal_try_to_free_buffer
>> 	 spin_lock(&journal->j_list_lock);
>>
>> __journal_temp_unlink_buffer (called under journal->j_list_lock by comments)
>> mark_buffer_dirty
>> __set_page_dirty
>> __mark_inode_dirty
>> spin_lock(&inode_lock);
>>
>> The patch tries to address the issue - it drops inode_lock before digging into
>> invalidate_inode_pages. This seems sane as inode hold should not gone from the
>> list and should not change its place.
>>
>> Signed-off-by: Denis V. Lunev <den@openvz.org>
>> --
>> diff --git a/fs/drop_caches.c b/fs/drop_caches.c
>> index 59375ef..4ac80d8 100644
>> --- a/fs/drop_caches.c
>> +++ b/fs/drop_caches.c
>> @@ -14,15 +14,27 @@ int sysctl_drop_caches;
>>
>> static void drop_pagecache_sb(struct super_block *sb)
>> {
>> -	struct inode *inode;
>> +	struct inode *inode, *old;
>>
>> +	old = NULL;
>> 	spin_lock(&inode_lock);
>> 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
>> 		if (inode->i_state & (I_FREEING|I_WILL_FREE))

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=130
https://new-forum.openvz.org/index.php?t=rview&th=4780&goto=24334#msg_24334
https://new-forum.openvz.org/index.php?t=post&reply_to=24334
https://new-forum.openvz.org/index.php

>> 			continue;
>> -		__invalidate_mapping_pages(inode->i_mapping, 0, -1, true);
>> +		__iget(inode);
>> +		spin_unlock(&inode_lock);
>> +
>> +		if (old != NULL)
>> +			iput(old);
>> +		invalidate_mapping_pages(inode->i_mapping, 0, -1);
>> +		old = inode;
>> +
>> +		spin_lock(&inode_lock);
>> 	}
>> 	spin_unlock(&inode_lock);
>> +
>> +	if (old != NULL)
>> +		iput(old);
>> }
>
> We need to hold onto inode_lock while walking sb->s_inodes. Otherwise the
> inode which we're currently looking at could get removed from i_sb_list and
> bad things will happen (drop_pagecache_sb will go infinite, or will oops, I
> guess).

as far as I understand, there are the following place removing inode
from i_sb_list:
- generic_delete_inode (via iput_final)
- generic_forget_inode (via iput_final)
- hugetlbfs_forget_inode
- dispose_list after the check under inode_lock for i_count

So, the patch is sane from disappearing point of view:
- I hold inode under inode_lock
- and iput it after new inode to clean has been found and hold

Nevertheless we'll think a bit about ext3 fix. Though other staff like
gfs2 etc can also be affected.

Regards,
	Den

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

