Subject: Re: [PATCH] iptables 32bit compat layer
Posted by Mishin Dmitry on Wed, 29 Mar 2006 11:36:16 GMT

View Forum Message <> Reply to Message

On Wednesday 29 March 2006 13:28, Patrick McHardy wrote:

> Dmitry Mishin wrote:

> > This patch extends current iptables compatibility layer in order to get
> > 32bit iptables to work on 64bit kernel. Current layer is insufficient due
> > to alignment checks both in kernel and user space tools.

> >

> > Patch is for current net-2.6.17 with addition of move of

> > jpt_entry_{match| target} definitions to xt_entry_{match|target}.

>

> Thanks, this looks good. Two small issues so far:

> > diff --git a/net/compat.c b/net/compat.c

> > index 13177al..6a7028e 100644

> > --- a/net/compat.c

> > +++ b/net/compat.c

>> @@ -476,8 +476,7 @@ asmlinkage long compat_sys_setsockopt(in
>> interr;

> > struct socket *sock;

> >

>>-[*SO_SET_REPLACE seems to be the same in all levels */

> > - if (optname == IPT_SO_SET_REPLACE)

> > +if (level == SOL_IPV6 && optname == IPT_SO_SET_REPLACE)
>> return do_netfilter_replace(fd, level, optname,

> > optval, optlen);

>

> | don't understand the reason for this change. If its not a mistake,

> it would make more sense to check for IP6T_SO_SET_REPLACE I guess ..
IP6T_SO_SET REPLACE == IPT_SO_SET_REPLACE == XT_SO_SET_REPLACE.
Rename will require respective #include directive rename, so, | just leave
this as it is. BTW, I'll make respective patch for IPV6 in the near future
and this hunk will be removed at all.

>

> > +#ifdef CONFIG_COMPAT

> > +void xt_compat_lock(int af)

> >+

> > + down(&xt[af].compat_mutex);

> > +}

> > +EXPORT_SYMBOL_GPL(xt_compat_lock);
> >+

> > +void xt_compat_unlock(int af)

> >+

> > + up(&xt[af].compat_mutex);

> > +}

> > +EXPORT_SYMBOL_GPL(xt_compat_unlock);

Page 1 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=258
https://new-forum.openvz.org/index.php?t=rview&th=300&goto=2327#msg_2327
https://new-forum.openvz.org/index.php?t=post&reply_to=2327
https://new-forum.openvz.org/index.php

> > +#endif

>

> Won't a seperate compat-mutex introduce races between compat- and

> non-compat users? BTW, the up/down calls have been replaced by the

> new mutex API in Linus' tree, please resend the patch against the

> current tree.

compat_mutex is always over xt[af].mutex and can't be taken under the last
one, so, there should be no races.

New patch is attached.

Thanks,
Dmitry.

diff --git a/include/linux/netfilter/x_tables.h b/include/linux/netfilter/x_tables.h
index 1350e47..f6bdef8 100644

--- al/include/linux/netfilter/x_tables.h

+++ b/include/linux/netfilter/x_tables.h

@@ -142,6 +142,12 @@ struct xt_counters_info

#define ASSERT_WRITE_LOCK(x)

#include <linux/netfilter_ipv4/listhelp.h>

+#ifdef CONFIG_COMPAT
+#define COMPAT_TO_USER 1
+#define COMPAT_FROM_USER -1
+#define COMPAT_CALC_SIZE 0
+#endif
+
struct xt_match
{
struct list_head list;
@@ -175,6 +181,9 @@ struct xt_match
void (*destroy)(const struct xt_match *match, void *matchinfo,
unsigned int matchinfosize);

+ /* Called when userspace align differs from kernel space one */

+ int (*compat)(void *match, void **dstptr, int *size, int convert);

+
[* Set this to THIS_MODULE if you are a module, otherwise NULL */
struct module *me;

@@ -220,6 +229,9 @@ struct xt_target
void (*destroy)(const struct xt_target *target, void *targinfo,
unsigned int targinfosize);

+ /* Called when userspace align differs from kernel space one */
+ int (*compat)(void *target, void **dstptr, int *size, int convert);
+

Page 2 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

/[* Set this to THIS_MODULE if you are a module, otherwise NULL */
struct module *me;

@@ -314,6 +326,61 @@ extern void xt_proto_fini(int af);
extern struct xt_table_info *xt_alloc_table_info(unsigned int size);
extern void xt_free_table_info(struct xt_table_info *info);

+#ifdef CONFIG_COMPAT

+#include <net/compat.h>

+

+struct compat_xt_entry_match

gl

+ union {

+ struct {

+ u_intl6 t match_size;

+ char name[XT_FUNCTION_MAXNAMELEN - 1];
+ u_int8 t revision;

+ } user;

+ u_intl6_t match_size;

+}u;

+ unsigned char data[0];

+};

+

+struct compat_xt_entry_target

gl

+ union {

+ struct {

+ Uu_intl6_t target_size;

+ char name[XT_FUNCTION_MAXNAMELEN - 1];
+ u_int8_t revision;

+ } user,;

+ u_intl6_ttarget_size;

+}u;

+ unsigned char data[0];

+};

+

+/* FIXME: this works only on 32 bit tasks
+ * need to change whole approach in order to calculate align as function of
+ * current task alignment */

+

+struct compat_xt_counters

+

+ u_int32_t cnt[4];

+};

+

+struct compat_xt_counters_info

+

+ char name[XT_TABLE_MAXNAMELEN],

Page 3 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ compat_uint_t num_counters;

+ struct compat_xt_counters counters|[0];

+};

+

+#define COMPAT _XT_ALIGN(s) (((s) + (__alignof _ (struct compat_xt_counters)-1)) \
+ & ~(__alignof__ (struct compat_xt_counters)-1))

+

+extern void xt_compat_lock(int af);

+extern void xt_compat_unlock(int af);

+extern int xt_compat_match(void *match, void **dstptr, int *size, int convert);
+extern int xt_compat_target(void *target, void **dstptr, int *size,

+ int convert);

+

+#endif /* CONFIG_COMPAT */

#endif /¥ _ KERNEL__ */

#endif /* _X_TABLES_H */
diff --git a/include/linux/netfilter_ipv4/ip_tables.h b/include/linux/netfilter_ipv4/ip_tables.h
index d5b8c0d..cOdac16 100644
--- al/include/linux/netfilter_ipv4/ip_tables.h
+++ b/include/linux/netfilter_ipv4/ip_tables.h
@@ -316,5 +316,23 @@ extern unsigned int ipt_do_table(struct
void *userdata);

#define IPT_ALIGN(s) XT_ALIGN(s)
+

+#ifdef CONFIG_COMPAT

+#include <net/compat.h>

+

+struct compat_ipt_entry

H

+ struct ipt_ip ip;

+ compat_uint_t nfcache;

+ u_intl6_ttarget offset;

+ u_intl6_t next_offset;

+ compat_uint_t comefrom;

+ struct compat_xt_counters counters;
+ unsigned char elems[0];

+};

+

+#define COMPAT_IPT_ALIGN(s) COMPAT_XT_ALIGN(s)
+

+#endif /* CONFIG_COMPAT */
#endif /*__ KERNEL__*/

#endif /* _IPTABLES H */

diff --git a/net/compat.c b/net/compat.c
index 8fd37cd..d5d69fa 100644

--- a/net/compat.c

Page 4 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+++ b/net/compat.c

@@ -476,8 +476,7 @@ asmlinkage long compat_sys_setsockopt(in
int err;
struct socket *sock;

- /* SO_SET_REPLACE seems to be the same in all levels */
- if (optname == IPT_SO_SET_REPLACE)
+ if (level == SOL_IPV6 && optname == IPT_SO_SET_REPLACE)
return do_netfilter_replace(fd, level, optname,
optval, optlen);

diff --git a/net/ipv4/netfilter/ip_tables.c b/net/ipv4/netfilter/ip_tables.c
index a7b194c..34df287 100644

--- a/net/ipv4/netfilter/ip_tables.c

+++ b/net/ipv4/netfilter/ip_tables.c

@@ -24,6 +24,7 @@

#include <linux/module.h>

#include <linux/icmp.h>

#include <net/ip.h>

+#include <net/compat.h>

#include <asm/uaccess.h>

#include <linux/mutex.h>

#include <linux/proc_fs.h>

@@ -799,17 +800,11 @@ get_counters(const struct xt_table info

}
}

-static int
-copy_entries_to_user(unsigned int total_size,
- struct ipt_table *table,
- void __user *userptr)
+static inline struct xt_counters * alloc_counters(struct ipt_table *table)
{
- unsigned int off, num, countersize;
- struct ipt_entry *e;
+ unsigned int countersize;
struct xt_counters *counters;
struct xt_table_info *private = table->private;
-intret=0;
- void *loc_cpu_entry;

I* We need atomic snapshot of counters: rest doesn't change
(other than comefrom, which userspace doesn't care
@@ -818,13 +813,32 @@ copy_entries_to_user(unsigned int total_
counters = vmalloc_node(countersize, numa_node_id());

if (counters == NULL)
- return -ENOMEM;

Page 5 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ return ERR_PTR(-ENOMEM);

/* First, sum counters... */
write_lock bh(&table->lock);
get_counters(private, counters);
write_unlock _bh(&table->lock);

+ return counters;

+}

+

+static int

+copy_entries_to_user(unsigned int total_size,
+ struct ipt_table *table,

+ void __user *userptr)

al

+ unsigned int off, num;

+ struct ipt_entry *e;

+ struct xt_counters *counters;

+ struct xt_table_info *private = table->private;

+intret=0;
+ void *loc_cpu_entry;
+

+ counters = alloc_counters(table);

+ if (IS_ERR(counters))

+ return PTR_ERR(counters);

+
[* choose the copy that is on our node/cpu, ...
* This choice is lazy (because current thread is
* allowed to migrate to another cpu)

@@ -878,50 +892,905 @@ copy_entries_to_user(unsigned int total_

goto free_counters;

}
}

- free_counters:

- vfree(counters);

+

+ free_counters:

+ viree(counters);

+ return ret;

+}

+

+#ifdef CONFIG_COMPAT
+struct compat_delta {

+ struct compat_delta *next;
+ u_intl6_t offset;

+ short delta;

+};

Page 6 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+

+static struct compat_delta *compat_offsets = NULL;
+

+static int compat_add_offset(u_int16_t offset, short delta)
gl

+ struct compat_delta *tmp;

+

+ tmp = kmalloc(sizeof(struct compat_delta), GFP_KERNEL);
+if ('tmp)

+ return -ENOMEM;

+ tmp->offset = offset;

+ tmp->delta = delta;

+ if (compat_offsets) {

+ tmp->next = compat_offsets->next;

+ compat_offsets->next = tmp;

+}else {

+ compat_offsets = tmp;

+ tmp->next = NULL,

+}

+ return O;

+}

+

+static void compat_flush_offsets(void)

H

+ struct compat_delta *tmp, *next;

+

+ if (compat_offsets) {

+ for(tmp = compat_offsets; tmp; tmp = next) {
+ next = tmp->next;

+ kfree(tmp);

+}

+ compat_offsets = NULL;

+}

+}

+

+static short compat_calc_jump(u_intl6_t offset)
gl

+ struct compat_delta *tmp;

+ short delta;

+

+ for(tmp = compat_offsets, delta = 0; tmp; tmp = tmp->next)
+ if (tmp->offset < offset)

+ delta += tmp->delta;

+ return delta;

+}

+

+struct compat_ipt_standard_target

H

Page 7 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ struct compat_xt_entry_target target;

+ compat_int_t verdict;

+};

+

+#define IPT_ST_OFFSET (sizeof(struct ipt_standard_target) - \
+ sizeof(struct compat_ipt_standard_target))

+

+struct compat_ipt_standard

+

+ struct compat_ipt_entry entry;

+ struct compat_ipt_standard_target target;

+};

+

+static int compat_ipt_standard_fn(void *target,

+ void **dstptr, int *size, int convert)

gl

+ struct compat_ipt_standard_target compat_st, *pcompat_st;
+ struct ipt_standard_target st, *pst;

+ int ret;
+
+ret=0;

+ switch (convert) {
+ case COMPAT_TO_USER:
pst = (struct ipt_standard_target *)target;
memcpy(&compat_st.target, &pst->target,
sizeof(struct ipt_entry_target));
compat_st.verdict = pst->verdict;
if (compat_st.verdict > 0)
compat_st.verdict -=
compat_calc_jump(compat_st.verdict);
compat_st.target.u.user.target_size =
sizeof(struct compat_ipt_standard_target);
if (__copy_to_user(*dstptr, &compat_st,
sizeof(struct compat_ipt_standard_target)))
ret = -EFAULT;
*size -= IPT_ST_OFFSET;
*dstptr += sizeof(struct compat_ipt_standard_target);
break;
case COMPAT_FROM_USER:
pcompat_st =
(struct compat_ipt_standard_target *)target;
memcpy(&st.target, &pcompat_st->target,
sizeof(struct ipt_entry_target));
st.verdict = pcompat_st->verdict;
if (st.verdict > 0)
st.verdict += compat_calc_jump(st.verdict);
st.target.u.user.target_size =
sizeof(struct ipt_standard_target);

S T T T e T S S S S S S S S S S A A I T T

Page 8 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

memcpy(*dstptr, &st,
sizeof(struct ipt_standard_target));
*size += IPT_ST_OFFSET;
*dstptr += sizeof(struct ipt_standard_target);
break;
case COMPAT_CALC_SIZE:
*size += IPT_ST_OFFSET;
break;
default:
ret = -ENOPROTOOPT;
break;

+ 4+ + + + 4+ +++ o+

+

+}

+ return ret;

+}

+

+static inline int

+compat_calc_match(struct ipt_entry_match *m, int * size)

H

+ if (m->u.kernel.match->compat)

+ m->u.kernel.match->compat(m, NULL, size, COMPAT_CALC_SIZE);
+ else

+ xt_compat_match(m, NULL, size, COMPAT_CALC_SIZE);

+ return O;

+}

+

+static int compat_calc_entry(struct ipt_entry *e, struct xt_table_info *info,
+ void *base, struct xt_table_info *newinfo)

+

+ struct ipt_entry_target *t;

+ u_intl6_t entry offset;

+ int off, i, ret;
+
+ off = 0;

+ entry_offset = (void *)e - base;
+IPT_MATCH_ITERATE(e, compat_calc_match, &off);
+t=ipt_get target(e);

+ if (t->u.kernel.target->compat)

+ t->u.kernel.target->compat(t, NULL, &off, COMPAT_CALC_SIZE);
+ else

+ xt_compat_target(t, NULL, &off, COMPAT_CALC_SIZE);
+ newinfo->size -= off;

+ ret = compat_add_offset(entry_offset, off);

+ if (ret)

+ return ret;

+

+ for (i = 0; i< NF_IP_NUMHOOKS; i++) {

+ if (info->hook_entry[i] && (e < (struct ipt_entry *)

+ (base + info->hook_entry[i])))

Page 9 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ newinfo->hook_entry[i] -= off;

+ if (info->underflow[i] && (e < (struct ipt_entry *)

+ (base + info->underflow[i])))

+ newinfo->underflow][i] -= off;

+)

+return O;

+)

+

+static int compat_table_info(struct xt_table_info *info,
+ struct xt_table_info *newinfo)

gl

+ void *loc_cpu_entry;

+inti;

+

+ if ('newinfo || linfo)

+ return -EINVAL,

+

+ memset(newinfo, 0, sizeof(struct xt_table_info));

+ newinfo->size = info->size;

+ newinfo->number = info->number;

+for (i=0; i < NF_IP_NUMHOOKS; i++) {

+ newinfo->hook_entry[i] = info->hook_entry[i];

+ newinfo->underflow[i] = info->underflow]i];

+}

+loc_cpu_entry = info->entries[raw_smp_processor_id()];
+ return IPT_ENTRY_ITERATE(loc_cpu_entry, info->size,
+ compat_calc_entry, info, loc_cpu_entry, newinfo);
+}

+#endif

+

+static int get_info(void ___user *user, int *len, int compat)
H

+ char name[IPT_TABLE_MAXNAMELEN];

+ struct ipt_table *t;

+int ret;

+

+ if (*len != sizeof(struct ipt_getinfo)) {

+ duprintf("length %u !'= %u\n", *len,

+ (unsigned int)sizeof(struct ipt_getinfo));

+ return -EINVAL,

+}

+

+ if (copy_from_user(name, user, sizeof(name)) != 0)
+ return -EFAULT;

+

+ name[IPT_TABLE_MAXNAMELEN-1] = "\0';
+#ifdef CONFIG_COMPAT

+ if (compat)

Page 10 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ xt_compat_lock(AF_INET);

+#endif

+t=try_then_request_module(xt_find_table_ lock(AF_INET, name),
+ ‘"iptable_%s", name);

+if (t && IS_ERR(t)) {

+ struct ipt_getinfo info;

+ struct xt_table_info *private = t->private;

+

+#ifdef CONFIG_COMPAT

+ if (compat) {

+ struct xt_table_info tmp;

+ ret = compat_table_info(private, &tmp);

+ compat_flush_offsets();

+ private = &tmp;

+}

+#endif

+ info.valid_hooks = t->valid_hooks;

+ memcpy(info.hook_entry, private->hook_entry,
+ sizeof(info.hook_entry));

+ memcpy(info.underflow, private->underflow,
+ sizeof(info.underflow));

+ info.num_entries = private->number;

+ info.size = private->size;

+ strcpy(info.name, name);
+
+
+
+
+
+
+

if (copy_to_user(user, &info, *len) != 0)
ret = -EFAULT,

else

ret =0;

xt_table_unlock(t);
+ module_put(t->me);
+} else
+ ret=t? PTR_ERR(t) : -ENOENT;
+#ifdef CONFIG_COMPAT
+ if (compat)
+ xt_compat_unlock(AF_INET);
+#endif
+ return ret;
+}
+
+static int
+get_entries(struct ipt_get_entries __user *uptr, int *len)
+
+ int ret;
+ struct ipt_get_entries get;
+ struct ipt_table *t;
+

Page 11 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ if (*len < sizeof(get)) {

+ duprintf("get_entries: %u < %d\n", *len,

+ (unsigned int)sizeof(get));

+ return -EINVAL;

+}

+ if (copy_from_user(&get, uptr, sizeof(get)) != 0)
+ return -EFAULT,;

+ if (*len != sizeof(struct ipt_get_entries) + get.size) {
+ duprintf("get_entries: %u != %u\n", *len,

+ (unsigned int)(sizeof(struct ipt_get_entries) +
+ get.size));

+ return -EINVAL;

+)

+

+t=xt_find_table_lock(AF_INET, get.name);
+if (t && IS_ERR(t)) {

+ struct xt_table_info *private = t->private;

+ duprintf("t->private->number = %u\n",

+ private->number);

+ if (get.size == private->size)

+ ret = copy_entries_to_user(private->size,

+ t, uptr->entrytable);

+ else{

+ duprintf("get_entries: I've got %u not %u'\n",

+ private->size,

+ get.size);

+ ret = -EINVAL;

+}

+ module_put(t->me);

+ xt_table_unlock(t);

+} else

+ ret=t? PTR_ERR(t) : -ENOENT;

+

+ return ret;

+}

+

+static int

+ do_replace(const char *name, unsigned int valid_hooks,
+ struct xt_table_info *newinfo, unsigned int num_counters,
+ void __user *counters_ptr)

gl

+int ret;

+ struct ipt_table *t;

+ struct xt_table_info *oldinfo;

+ struct xt_counters *counters;

+ void *loc_cpu_old_entry;

+

+ret=0;

Page 12 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ counters = vmalloc(num_counters * sizeof(struct xt_counters));
+ if (lcounters) {

+ ret = -ENOMEM;

+ goto out;

+)

+

+t =try_then_request_module(xt_find_table_lock(AF_INET, name),
+ "iptable_%s", name);

+if ('t || IS_ERR()) {

+ ret=t? PTR_ERR(t) : -ENOENT;

+ goto free_newinfo_counters_untrans;

+}

+

+/* You lied! */

+ if (valid_hooks != t->valid_hooks) {

+ duprintf(*Valid hook crap: %08X vs %08X\n",
+ valid_hooks, t->valid_hooks);

+ ret = -EINVAL,

+ goto put_module;

+)
+

+ oldinfo = xt_replace_table(t, num_counters, newinfo, &ret);
+ if (loldinfo)

+ goto put_module;

+

+ /* Update module usage count based on number of rules */

+ duprintf("do_replace: oldnum=%u, initnum=%u, newnum=%u\n",
+ oldinfo->number, oldinfo->initial_entries, newinfo->number);

+ if ((oldinfo->number > oldinfo->initial_entries) ||

+ (newinfo->number <= oldinfo->initial_entries))

+ module_put(t->me);

+ if ((oldinfo->number > oldinfo->initial_entries) &&

+ (newinfo->number <= oldinfo->initial_entries))

+ module_put(t->me);

+

+ /* Get the old counters. */

+ get_counters(oldinfo, counters);

+ /* Decrease module usage counts and free resource */
+loc_cpu_old_entry = oldinfo->entries[raw_smp_processor_id()];
+ IPT_ENTRY_ITERATE(loc_cpu_old_entry, oldinfo->size, cleanup_entry,NULL);
+ xt_free_table_info(oldinfo);

+ if (copy_to_user(counters_ptr, counters,

+ sizeof(struct xt_counters) * num_counters) != 0)

+ ret = -EFAULT;

+ vfree(counters);

+ xt_table_unlock(t);

+ return ret;

+

Page 13 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ put_module:

+ module_put(t->me);

+ xt_table_unlock(t);

+ free_newinfo_counters_untrans:

+ vfree(counters);

+ out:

+ return ret;

+}

+

+static int

+do_replace(void __user *user, unsigned int len)

gl

+int ret;

+ struct ipt_replace tmp;

+ struct xt_table_info *newinfo;

+ void *loc_cpu_entry;

+

+ if (copy_from_user(&tmp, user, sizeof(tmp)) != 0)

+ return -EFAULT;

+

+ /* Hack: Causes ipchains to give correct error msg --RR */
+ if (len = sizeof(tmp) + tmp.size)

+ return -ENOPROTOOPT,

+

+ /[* overflow check */

+ if (tmp.size >= (INT_MAX - sizeof(struct xt_table_info)) / NR_CPUS -
+ SMP_CACHE_BYTES)

+ return -ENOMEM;

+if (tmp.num_counters >= INT_MAX / sizeof(struct xt_counters))
+ return -ENOMEM;

+

+ newinfo = xt_alloc_table_info(tmp.size);

+ if ('newinfo)

+ return -ENOMEM,;

+

+ /* choose the copy that is our node/cpu */
+loc_cpu_entry = newinfo->entries[raw_smp_processor_id()];
+ if (copy_from_user(loc_cpu_entry, user + sizeof(tmp),
+ tmp.size) 1= 0) {

+ ret = -EFAULT,;

+ goto free_newinfo;

+}
+

+ ret = translate_table(tmp.name, tmp.valid_hooks,

+ newinfo, loc_cpu_entry, tmp.size, tmp.num_entries,
+ tmp.hook_entry, tmp.underflow);

+if (ret 1= 0)

+ goto free_newinfo;

Page 14 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+
+ duprintf("ip_tables: Translated table\n");

+

+ret=__do_replace(tmp.name, tmp.valid_hooks,
+ newinfo, tmp.num_counters,

+ tmp.counters);

+ if (ret)

+ goto free_newinfo_untrans;

+ return O;

+

+ free_newinfo_untrans:

+ IPT_ENTRY_ITERATE(loc_cpu_entry, newinfo->size, cleanup_entry,NULL);
+ free_newinfo:

+ xt_free_table_info(newinfo);

+ return ret;

+}

+

+/* We're lazy, and add to the first CPU; overflow works its fey magic
+ * and everything is OK. */

+static inline int

+add_counter_to_entry(struct ipt_entry *e,

+ const struct xt_counters addme[],

+ unsigned int *)

H

+#if O

+ duprintf("add_counter: Entry %u %lu/%lu + %lu/%lu\n",

+ %,

(long unsigned int)e->counters.pcnt,

(long unsigned int)e->counters.bcnt,

(long unsigned int)addme[*i].pcnt,

(long unsigned int)addme[*i].bcnt);

+#endif

+

+ ADD_COUNTER(e->counters, addme[*i].bcnt, addme[*i].pcnt);
+

+ (*i)++;

+ return O;

+}

+

+static int

+do_add_counters(void __user *user, unsigned int len, int compat)
H

+ unsigned int i;

+ struct xt_counters_info tmp;

+ struct xt_counters *paddc;

+ unsigned int num_counters;

+ char *name;

+ int size;

+
+
+
+

Page 15 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ void *ptmp;

+ struct ipt_table *t;

+ struct xt_table_info *private;

+intret = 0;

+ void *loc_cpu_entry;

+#ifdef CONFIG_COMPAT

+ struct compat_xt_counters_info compat_tmp;
+

+ if (compat) {

+ ptmp = &compat_tmp;

+ size = sizeof(struct compat_xt_counters_info);
+} else

+#endif

+{

+ ptmp = &tmp;

+ size = sizeof(struct xt_counters_info);

+)

+

+ if (copy_from_user(ptmp, user, size) != 0)

+ return -EFAULT;

+

+#ifdef CONFIG_COMPAT

+ if (compat) {

+ num_counters = compat_tmp.num_counters;
+ name = compat_tmp.name;

+} else

+#endif

+{

+ num_counters = tmp.num_counters;

+ name = tmp.name;

+}
+

+ if (len != size + num_counters * sizeof(struct xt_counters))
+ return -EINVAL;

+

+ paddc = vmalloc_node(len - size, numa_node_id());

+ if ('paddc)

+ return -ENOMEM,;

+

+ if (copy_from_user(paddc, user + size, len - size) 1= 0) {
+ ret = -EFAULT,

+ goto free;

+)

+

+t=xt_find_table_lock(AF_INET, name);

+if ('t || IS_ERR()) {

+ ret=t? PTR_ERR(t) : -ENOENT;

+ goto free;

Page 16 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+)
+

+ write_lock_bh(&t->lock);

+ private = t->private;

+ if (private->number !'= num_counters) {

+ ret = -EINVAL,;

+ goto unlock_up_free;

+}

+

+i=0;

+ /* Choose the copy that is on our node */
+loc_cpu_entry = private->entries[raw_smp_processor_id()];
+IPT_ENTRY_ITERATE(loc_cpu_entry,

+ private->size,

+ add_counter_to_entry,

+ paddc,

+ &)

+ unlock_up_free:

+ write_unlock_bh(&t->lock);

+ xt_table_unlock(t);

+ module_put(t->me);

+ free:

+ viree(paddc);

+

+ return ret;

+}

+

+#ifdef CONFIG_COMPAT

+struct compat_ipt_replace {

+ char name[IPT_TABLE_MAXNAMELEN];

+u32 valid_hooks;

+u32 num_entries;

+Uu32 size;

+u32 hook_entry[NF_IP_NUMHOOKS];

+u32 underflow[NF_IP_NUMHOOKS];

+u32 num_counters;

+ compat_uptr_t counters; /* struct ipt_counters * */
+ struct compat_ipt_entry entries[0];

+};

+

+static inline int compat_copy_match_to_user(struct ipt_entry_match *m,
+ void __user **dstptr, compat_uint_t *size)

+

+ if (m->u.kernel.match->compat)

+ return m->u.kernel.match->compat(m, dstptr, size,
+ COMPAT_TO_USER);

+ else

+ return xt_compat_match(m, dstptr, size, COMPAT_TO_USER);

Page 17 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+}
+

+static int compat_copy_entry_to_user(struct ipt_entry *e,
+ void __user **dstptr, compat_uint_t *size)

gl

+ struct ipt_entry_target __user *t;

+ struct compat_ipt_entry __user *ce;

+ u_intl6_t target offset, next_offset;

+ compat_uint_t origsize;

+int ret;

+

+ret = -EFAULT;

+ origsize = *size;

+ ce = (struct compat_ipt_entry __user *)*dstptr;

+if (__copy_to_user(ce, e, sizeof(struct ipt_entry)))

+ goto out;

+

+ *dstptr += sizeof(struct compat_ipt_entry);

+ret = IPT_MATCH_ITERATE(e, compat_copy_match_to_user, dstptr, size);
+ target_offset = e->target_offset - (origsize - *size);

+ if (ret)

+ goto out;

+t = ipt_get_target(e);

+ if (t->u.kernel.target->compat)

+ ret = t->u.kernel.target->compat(t, dstptr, size,

+ COMPAT_TO_USER);

+ else

+ ret = xt_compat_target(t, dstptr, size, COMPAT_TO_USER);
+if (ret)

+ goto out;

+ret = -EFAULT;

+ next_offset = e->next_offset - (origsize - *size);

+if (__put_user(target_offset, &ce->target_offset))

+ goto out;

+if (__put_user(next_offset, &ce->next_offset))

+ goto out;

+ return O;

+out:

+ return ret;

+}

+

+static inline int

+compat_check_calc_match(struct ipt_entry_match *m,
+ const char *name,

+ const struct ipt_ip *ip,

+ unsigned int hookmask,

+ int *size, int *i)

H

Page 18 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ struct ipt_match *match;

+
+ match = try_then_request_module(xt_find_match(AF_INET, m->u.user.name,
+ m->u.user.revision),

+ ipt_%s", m->u.user.name);

+if (IS_ERR(match) || 'match) {

+ duprintf("compat_check_calc_match: "%s' not found\n",
+ m->u.user.name);

+ return match ? PTR_ERR(match) : -ENOENT;

+}

+ m->u.kernel.match = match;

+

+ if (m->u.kernel.match->compat)

+ m->u.kernel.match->compat(m, NULL, size, COMPAT_CALC_SIZE);
+ else

+ xt_compat_match(m, NULL, size, COMPAT_CALC_SIZE),
+

+ (*i)++;

+ return O;

+}

+

+static inline int

+check _compat_entry_size_and_hooks(struct ipt_entry *e,
struct xt_table_info *newinfo,

unsigned int *size,

unsigned char *base,

unsigned char *limit,

unsigned int *hook_entries,

unsigned int *underflows,

unsigned int *i,

const char *name)

+ + + + + + + +

+

+ struct ipt_entry_target *t;

+ struct ipt_target *target;

+ u_intl6_t entry offset;

+ int ret, off, h, j;

+

+ duprintf("check_compat_entry_size_and_hooks %p\n", e);

+ if ((unsigned long)e % __alignof _ (struct compat_ipt_entry) =0
+ || (unsigned char *)e + sizeof(struct compat_ipt_entry) >= limit) {
+ duprintf("Bad offset %p, limit = %p\n“, e, limit);

+ return -EINVAL;

+}

+

+ if (e->next_offset < sizeof(struct compat_ipt_entry) +

+ sizeof(struct compat_xt_entry_target)) {

+ duprintf("checking: element %p size %u\n",

+ e, e->next_offset);

Page 19 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ return -EINVAL;
+}
+

+ if (lip_checkentry(&e->ip)) {

+ duprintf("ip_tables: ip check failed %p %s.\n", e, name);

+ return -EINVAL,

+}

+

+ off = 0;

+ entry_offset = (void *)e - (void *)base,;

+j=0;

+ret = IPT_MATCH_ITERATE(e, compat_check_calc_match, name, &e->ip,
+ e->comefrom, &off, &));

+if (ret 1= 0)
+ goto out;
+

+t=ipt_get target(e);

+ target = try_then_request_module(xt_find_target(AF_INET,
+ t->u.user.name,

+ t->u.user.revision),

+ "ipt_%s", t->u.user.name);

+ if (IS_ERR(target) || 'target) {

+ duprintf("check_entry: "%s' not found\n", t->u.user.name);
+ ret =target ? PTR_ERR(target) : -ENOENT;

+ goto out;

+}

+ t->u.kernel.target = target;

+

+ if (t->u.kernel.target->compat)

+ t->u.kernel.target->compat(t, NULL, &off, COMPAT_CALC_SIZE);
+ else

+ xt_compat_target(t, NULL, &off, COMPAT_CALC_SIZE);
+ *size += off;

+ ret = compat_add_offset(entry_offset, off);

+ if (ret)

+ goto out;

+

+ /* Check hooks & underflows */

+ for (h = 0; h < NF_IP_NUMHOOKS; h++) {

+ if ((unsigned char *)e - base == hook_entries[h])

+ newinfo->hook_entry[h] = hook_entries[h];

+ if ((unsigned char *)e - base == underflowslh])

+ newinfo->underflow[h] = underflows[h];

+}
+

+ /* Clear counters and comefrom */
+ e->counters = ((struct ipt_counters) { 0, 0 });
+ e->comefrom = 0;

Page 20 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+

+ (*i)++;

+ return O;

+out:

+ IPT_MATCH_ITERATE(e, cleanup_match, &j);

+ return ret;

+)

+

+static inline int compat_copy_match_from_user(struct ipt_entry_match *m,
+ void **dstptr, compat_uint_t *size, const char *name,

+ const struct ipt_ip *ip, unsigned int hookmask)

gl

+ struct ipt_entry_match *dm,;

+ struct ipt_match *match;

+int ret;

+

+ dm = (struct ipt_entry_match *)*dstptr;

+ match = m->u.kernel.match;

+ if (match->compat)

+ match->compat(m, dstptr, size, COMPAT_FROM_USER);

+ else

+ Xt_compat_match(m, dstptr, size, COMPAT_FROM_USER);
+

+ ret = xt_check_match(match, AF_INET, dm->u.match_size - sizeof(*dm),
+ name, hookmask, ip->proto,

+ ip->invflags & IPT_INV_PROTO);

+if (ret)

+ return ret;

+

+ if (m->u.kernel.match->checkentry

+ && 'm->u.kernel.match->checkentry(name, ip, match, dm->data,
+ dm->u.match_size - sizeof(*dm),

+ hookmask)) {

+ duprintf("ip_tables: check failed for "%s'.\n",

+ m->u.kernel.match->name);

+ return -EINVAL;

+}

+ return O;

+}

+

+static int compat_copy_entry from_user(struct ipt_entry *e, void **dstptr,
+ unsigned int *size, const char *name,

+ struct xt_table_info *newinfo, unsigned char *base)

+

+ struct ipt_entry_target *t;

+ struct ipt_target *target;

+ struct ipt_entry *de;

+ unsigned int origsize;

Page 21 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+intret, h;

+

+ret=0;

+ origsize = *size;

+ de = (struct ipt_entry *)*dstptr;

+ memcpy(de, e, sizeof(struct ipt_entry));

+

+ *dstptr += sizeof(struct compat_ipt_entry);

+ret = IPT_MATCH_ITERATE(e, compat_copy_match_from_user, dstptr, size,

+ name, &de->ip, de->comefrom);

+if (ret)

+ goto out;

+ de->target_offset = e->target_offset - (origsize - *size);

+t=ipt_get_target(e);

+ target = t->u.kernel.target;

+ if (target->compat)

+ target->compat(t, dstptr, size, COMPAT_FROM_USER);

+ else

+ xt_compat_target(t, dstptr, size, COMPAT_FROM_USER);

+

+ de->next_offset = e->next_offset - (origsize - *size);

+ for (h = 0; h < NF_IP_NUMHOOKS; h++) {

+ if ((unsigned char *)de - base < newinfo->hook_entry[h])

+ newinfo->hook_entry[h] -= origsize - *size;

+ if ((unsigned char *)de - base < newinfo->underflow[h])

+ newinfo->underflow[h] -= origsize - *size;

+}

+

+t=ipt_get target(de);

+ target = t->u.kernel.target;

+ ret = xt_check_target(target, AF_INET, t->u.target_size - sizeof(*t),

+ name, e->comefrom, e->ip.proto,

+ e->ip.invflags & IPT_INV_PROTO);

+ if (ret)

+ goto out;

+

+ ret = -EINVAL,;

+ if (t->u.kernel.target == &ipt_standard_target) {

+ if (Istandard_check(t, *size))

+ goto out;

+ } else if (t->u.kernel.target->checkentry

+ && 't->u.kernel.target->checkentry(name, de, target,
t->data, t->u.target_size - sizeof(*t),
de->comefrom)) {

duprintf("ip_tables: compat: check failed for "%s'.\n",
t->u.kernel.target->name);

goto out;

}

+
+
+
+
+
+

Page 22 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ret=0;
+out:
return ret;

}

static int

-get_entries(const struct ipt_get_entries *entries,
- struct ipt_get_entries __user *uptr)
+translate_compat_table(const char *name,
unsigned int valid_hooks,

struct xt_table_info **pinfo,

void **pentry0,

unsigned int total_size,

unsigned int number,

unsigned int *hook_entries,

unsigned int *underflows)

+ 4+ + + + + +

~=

+ unsigned int i;
+ struct xt_table_info *newinfo, *info;
+ void *pos, *entry0, *entry1;
+ unsigned int size;
int ret;
- struct ipt_table *t;

-t =xt_find_table_lock(AF_INET, entries->name);

-if (t && NIS_ERR(1)) {

struct xt_table_info *private = t->private;

duprintf("t->private->number = %u\n",
private->number);

if (entries->size == private->size)

ret = copy_entries_to_user(private->size,

- t, uptr->entrytable);

else {

duprintf("get_entries: I've got %u not %ul\n",
private->size,
entries->size);

- ret = -EINVAL,

+ info = *pinfo;

+ entry0 = *pentry0;

+ size = total_size;

+ info->number = number,

+

+ /* Init all hooks to impossible value. */

+for (i = 0; i < NF_IP_NUMHOOKS; i++) {

+ info->hook_entry[i] = OXFFFFFFFF;

+ info->underflow[i] = OXFFFFFFFF;

+}
+

Page 23 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ duprintf("translate_compat_table: size %u\n", info->size);
+i=0;

+ xt_compat_lock(AF_INET);

+ /* Walk through entries, checking offsets. */

+ret = IPT_ENTRY_ITERATE(entryO, total_size,

+ check_compat_entry size_and_hooks,

+ info, &size, entry0,

+ entryO + total_size,

+ hook_entries, underflows, &i, name);

+if (ret 1= 0)
+ goto out_unlock;
+

+ ret = -EINVAL,

+if (i '= number) {

+ duprintf("translate_compat_table: %u not %u entries\n",
+ i, number);

+ goto out_unlock;

+}

+

+ /* Check hooks all assigned */
+for (i = 0; i < NF_IP_NUMHOOKS; i++) {
+ /* Only hooks which are valid */
if (!(valid_hooks & (1 <<)))
continue;
if (info->hook_entry[i] == OXFFFFFFFF) {
duprintf("Invalid hook entry %u %u\n",
i, hook_entries]i]);
goto out_unlock;
}
- module_put(t->me);
- xt_table_unlock(t);
-} else
- ret=t? PTR_ERR(t) : -ENOENT;
+ if (info->underflow[i] == OXFFFFFFFF) {
+ duprintf("Invalid underflow %u %u\n",
+ i, underflows]i]);
+ goto out_unlock;
+}
+}
+
+ret = -ENOMEM,;
+ newinfo = xt_alloc_table_info(size);
+ if ('newinfo)
+ goto out_unlock;
+
+ newinfo->number = number;
+for (i = 0; i < NF_IP_NUMHOOKS; i++) {
+ newinfo->hook_entry[i] = info->hook_entryf[i];

+
+
+
+
+
+

Page 24 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ newinfo->underflow[i] = info->underflowf[i];

+}

+ entryl = newinfo->entries[raw_smp_processor_id()];
+ pos = entryl,;

+ size = total_size;

+ret = IPT_ENTRY_ITERATE(entryO, total_size,

+ compat_copy_entry from_user, &pos, &size,

+ name, newinfo, entryl);

+ compat_flush_offsets();

+ xt_compat_unlock(AF_INET);

+if (ret)

+ goto free_newinfo;

+

+ret = -ELOOP;

+ if (f'mark_source_chains(newinfo, valid_hooks, entry1))
+ goto free_newinfo;

+

+ /* And one copy for every other CPU */

+ for_each_cpu(i)

+ if (newinfo->entries[i] && newinfo->entries[i] != entry1)
+ memcpy(newinfo->entries[i], entryl, newinfo->size);
+

+ *pinfo = newinfo;

+ *pentry0 = entryl,

+ xt_free_table_info(info);

+ return O;

+free_newinfo:
+ xt_free_table_info(newinfo);
+out:

return ret;
+out_unlock:
+ xt_compat_unlock(AF_INET);
+ goto out;

}

static int
-do_replace(void __user *user, unsigned int len)
+compat_do_replace(void __user *user, unsigned int len)
{.
int ret;
- struct ipt_replace tmp;
- struct ipt_table *t;
- struct xt_table_info *newinfo, *oldinfo;
- struct xt_counters *counters;
- void *loc_cpu_entry, *loc_cpu_old_entry;
+ struct compat_ipt_replace tmp;
+ struct xt_table_info *newinfo;

Page 25 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ void *loc_cpu_entry;

if (copy_from_user(&tmp, user, sizeof(tmp)) != 0)
return -EFAULT;

@@ -949,151 +1818,201 @@ do_replace(void __user *user, unsigned i
goto free_newinfo;

}

- counters = vmalloc(tmp.num_counters * sizeof(struct xt_counters));
- if (Icounters) {

- ret = -ENOMEM;

+ ret = translate_compat_table(tmp.name, tmp.valid_hooks,

+ &newinfo, &loc_cpu_entry, tmp.size,
+ tmp.num_entries, tmp.hook_entry, tmp.underflow);
+if (ret 1= 0)
goto free_newinfo;
-}

- ret = translate_table(tmp.name, tmp.valid_hooks,

- newinfo, loc_cpu_entry, tmp.size, tmp.num_entries,
- tmp.hook_entry, tmp.underflow);

- if (ret 1= 0)

- goto free_newinfo_counters;

+ duprintf("compat_do_replace: Translated table\n");

- duprintf("ip_tables: Translated table\n");
+ret=__do_replace(tmp.name, tmp.valid_hooks,
+ newinfo, tmp.num_counters,

+ compat_ptr(tmp.counters));

+if (ret)

+ goto free_newinfo_untrans;

+ return O;

-t =try_then_request_module(xt_find_table lock(AF_INET, tmp.name),
- "iptable_%s", tmp.name);

-if ("'t] IS_ERR(1)) {

- ret=t? PTR_ERR(t) : -ENOENT;

- goto free_newinfo_counters_untrans;

-}

+ free_newinfo_untrans:

+ IPT_ENTRY_ITERATE(loc_cpu_entry, newinfo->size, cleanup_entry,NULL);
+ free_newinfo:

+ xt_free_table_info(newinfo);

+ return ret;

+}

- /* You lied! */
- if (tmp.valid_hooks !=t->valid_hooks) {

Page 26 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

duprintf("Valid hook crap: %08X vs %08X\n",
tmp.valid_hooks, t->valid_hooks);
ret = -EINVAL;
goto put_module;
-}
+static int
+compat_do_ipt_set_ctl(struct sock *sk, int cmd, void __user *user,
+ unsigned int len)
+H

+int ret;

- oldinfo = xt_replace_table(t, tmp.num_counters, newinfo, &ret);
- if ('oldinfo)

- goto put_module;

+ if (capable(CAP_NET_ADMIN))

+ return -EPERM,;

- I* Update module usage count based on number of rules */
- duprintf("do_replace: oldnum=%u, inithum=%u, newnum=%u\n",
- oldinfo->number, oldinfo->initial_entries, newinfo->number);
- if ((oldinfo->number > oldinfo->initial_entries) ||

- (newinfo->number <= oldinfo->initial_entries))

- module_put(t->me);

- if ((oldinfo->number > oldinfo->initial_entries) &&

- (newinfo->number <= oldinfo->initial_entries))

- module_put(t->me);

+ switch (cmd) {

+ case IPT_SO_SET_REPLACE:

+ ret = compat_do_replace(user, len);

+ break;

- I* Get the old counters. */

- get_counters(oldinfo, counters);

- I* Decrease module usage counts and free resource */
-loc_cpu_old_entry = oldinfo->entries[raw_smp_processor_id()];
-IPT_ENTRY_ITERATE(loc_cpu_old_entry, oldinfo->size, cleanup_entry,NULL);
- xt_free_table_info(oldinfo);

- if (copy_to_user(tmp.counters, counters,

- sizeof(struct xt_counters) * tmp.num_counters) != 0)

- ret = -EFAULT,

- vfree(counters);

- xt_table_unlock(t);

- return ret;

+case IPT_SO_SET_ADD COUNTERS:

+ ret = do_add_counters(user, len, 1);

+ break;

+

+ default:

Page 27 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ duprintf("do_ipt_set_ctl: unknown request %i\n", cmd);
+ ret = -EINVAL,

+}

- put_module:
- module_put(t->me);
- xt_table_unlock(t);
- free_newinfo_counters_untrans:
- IPT_ENTRY_ITERATE(loc_cpu_entry, newinfo->size, cleanup_entry,NULL);
- free_newinfo_counters:
- viree(counters);
- free_newinfo:
- xt_free_table_info(newinfo);
return ret;

}

-/* We're lazy, and add to the first CPU; overflow works its fey magic
- * and everything is OK. */

-static inline int

-add_counter_to_entry(struct ipt_entry *e,

- const struct xt_counters addme([],

- unsigned int *i)

+struct compat_ipt_get_entries

{

-#if O

- duprintf("add_counter: Entry %u %lu/%lu + %lu/%lu\n",

- A,

- (long unsigned int)e->counters.pcnt,

- (long unsigned int)e->counters.bcnt,
(long unsigned int)addme[*i].pcnt,

- (long unsigned int)addme[*i].bcnt);
-#endif

+ char name[IPT_TABLE_MAXNAMELEN];
+ compat_uint_t size;

+ struct compat_ipt_entry entrytable[0];

+};

- ADD_COUNTER(e->counters, addme[*i].bcnt, addme[*i].pcnt);
+static int compat_copy_entries_to_user(unsigned int total_size,
+ struct ipt_table *table, void __user *userptr)

gl

+ unsigned int off, num;

+ struct compat_ipt_entry e;

+ struct xt_counters *counters;

+ struct xt_table_info *private = table->private;

+ void __user *pos;

+ unsigned int size;

+intret=0;

Page 28 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ void *loc_cpu_entry;

- (*i)++;

- return O;

+ counters = alloc_counters(table);

+ if (IS_ERR(counters))

+ return PTR_ERR(counters);

+

+ /* choose the copy that is on our node/cpu, ...

+ * This choice is lazy (because current thread is

+ * allowed to migrate to another cpu)

+ */

+loc_cpu_entry = private->entries[raw_smp_processor_id()];
+ pos = userptr;

+ size = total_size;

+ret = IPT_ENTRY_ITERATE(loc_cpu_entry, total_size,
+ compat_copy_entry_to_user, &pos, &size);

+ if (ret)

+ goto free_counters;

+

+ /* ... then go back and fix counters and names */

+ for (off = 0, num = 0; off < size; off += e.next_offset, num++) {
+ unsigned int i;

struct ipt_entry_match m;

struct ipt_entry_target t;

ret = -EFAULT;

if (copy_from_user(&e, userptr + off,
sizeof(struct compat_ipt_entry)))

goto free_counters;

if (copy_to_user(userptr + off +
offsetof(struct compat_ipt_entry, counters),
&counters[num], sizeof(counters[numy])))
goto free_counters;

for (i = sizeof(struct compat_ipt_entry);
i < e.target_offset; i += m.u.match_size) {

if (copy_from_user(&m, userptr + off + i,
sizeof(struct ipt_entry_match)))

goto free_counters;

if (copy_to_user(userptr + off + i +
offsetof(struct ipt_entry _match, u.user.name),
m.u.kernel.match->name,
strlen(m.u.kernel.match->name) + 1))

goto free_counters;

}

if (copy_from_user(&t, userptr + off + e.target_offset,

S T T T e T S S S S S S S S S S A A I T T

Page 29 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ sizeof(struct ipt_entry_target)))

+ goto free_counters;

+ if (copy_to_user(userptr + off + e.target_offset +
+ offsetof(struct ipt_entry_target, u.user.name),
+ t.u.kernel.target->name,

+ strlen(t.u.kernel.target->name) + 1))

+ goto free_counters;

+}

+ret=0;

+free_counters:

+ vfree(counters);

+ return ret;

}

static int
-do_add_counters(void __user *user, unsigned int len)
+compat_get_entries(struct compat_ipt_get_entries __user *uptr, int *len)

{

- unsigned int i;

- struct xt_counters_info tmp, *paddc;
+int ret;

+ struct compat_ipt_get_entries get;
struct ipt_table *t;

- struct xt_table_info *private;

-intret=0;

- void *loc_cpu_entry;

- if (copy_from_user(&tmp, user, sizeof(tmp)) != 0)
- return -EFAULT,

- if (len = sizeof(tmp) + tmp.num_counters*sizeof(struct xt_counters))
+ if (*len < sizeof(get)) {
+ duprintf("compat_get_entries: %u < %u\n”,
+ *len, (unsigned int)sizeof(get));
return -EINVAL,

+}

- paddc = vmalloc_node(len, numa_node_id());

- if (paddc)

- return -ENOMEM,;

+ if (copy_from_user(&get, uptr, sizeof(get)) != 0)
+ return -EFAULT;

- if (copy_from_user(paddc, user, len) = 0) {

- ret = -EFAULT;

- goto free;

+ if (*len != sizeof(struct compat_ipt_get_entries) + get.size) {
+ duprintf("compat_get_entries: %u != %u\n", *len,

Page 30 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ (unsigned int)(sizeof(struct compat_ipt_get_entries) +
+ get.size));
+ return -EINVAL;

}

-t=xt_find_table lock(AF_INET, tmp.name);
-if ('t]| IS_ERR(1)) {
+ xt_compat_lock(AF_INET);
+t=xt_find_table_lock(AF_INET, get.name);
+if (t && '1S_ERR(1)) {
+ struct xt_table_info *private = t->private;
struct xt_table_info info;
duprintf("t->private->number = %u\n",
private->number);
ret = compat_table_info(private, &info);
if (Iret && get.size == info.size) {
ret = compat_copy_entries_to_user(private->size,
t, uptr->entrytable);
} else if ('ret) {
duprintf("compat_get_entries: I've got %u not %u'\n",
private->size,
get.size);
ret = -EINVAL;
}
compat_flush_offsets();
+ module_put(t->me);
+ xt_table_unlock(t);
+} else
ret=t? PTR_ERR(t) : -ENOENT;
- goto free;

-}

- write_lock_bh(&t->lock);

- private = t->private;

- if (private->number != paddc->num_counters) {
- ret = -EINVAL,;

- goto unlock_up_free;

-}

+ xt_compat_unlock(AF_INET);

+ return ret;

+}

-1=0;

- I* Choose the copy that is on our node */

- loc_cpu_entry = private->entries[raw_smp_processor_id()];
-IPT_ENTRY_ITERATE(loc_cpu_entry,

- private->size,

- add_counter_to_entry,

+ 4+ +++ A+t

Page 31 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- paddc->counters,

- &);

- unlock_up_free:

- write_unlock _bh(&t->lock);
- xt_table_unlock(t);

- module_put(t->me);

- free:

- vfree(paddc);

+static int
+compat_do_ipt_get_ctl(struct sock *sk, int cmd, void __user *user, int *len)
+H

+ int ret;

+ switch (cmd) {
+ case IPT_SO_GET INFO:
+ ret = get_info(user, len, 1);
+ break;
+ case IPT_SO_GET_ENTRIES:
+ ret = compat_get_entries(user, len);
+ break;
+ default:
+ duprintf("compat_do_ipt_get_ctl: unknown request %i\n", cmd);
+ ret = -EINVAL,;
+}
return ret;

}
+#endif

static int
do_ipt_set_ctl(struct sock *sk, int cmd, void __user *user, unsigned int len)
@@ -1109,7 +2028,7 @@ do_ipt_set_ctl(struct sock *sk, int cmd,

break;

case IPT_SO_SET_ADD_COUNTERS:
- ret = do_add_counters(user, len);
+ ret = do_add_counters(user, len, 0);
break;

default:
@@ -1129,65 +2048,13 @@ do_ipt_get_ctl(struct sock *sk, int cmd,
return -EPERM,;

switch (cmd) {
- case IPT_SO_GET_INFO: {
- char name[IPT_TABLE_MAXNAMELEN];
struct ipt_table *t;

- if (*len = sizeof(struct ipt_getinfo)) {

Page 32 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

duprintf("length %u != %u\n", *len,
sizeof(struct ipt_getinfo));

ret = -EINVAL;

- break;

-}

- if (copy_from_user(name, user, sizeof(name)) != 0) {
- ret=-EFAULT,

- break;

-}

name[IPT_TABLE_MAXNAMELEN-1] =0

t = try_then_request_module(xt_find_table lock(AF_INET, name),
"iptable_%s", name);

if (t && IS_ERR(t)) {

- struct ipt_getinfo info;

- struct xt_table_info *private = t->private;

- info.valid_hooks = t->valid_hooks;

- memcpy(info.hook_entry, private->hook_entry,
- sizeof(info.hook_entry));

- memcpy(info.underflow, private->underflow,

- sizeof(info.underflow));

- info.num_entries = private->number;

- info.size = private->size;

- memcpy(info.name, name, sizeof(info.name));

- if (copy_to_user(user, &info, *len) != 0)

- ret=-EFAULT;
- else
- ret=0;

- xt_table_unlock(t);

- module_put(t->me);

- }else

ret=t? PTR_ERR(t) : -ENOENT;

-}

- break;

- case IPT_SO_GET_ENTRIES: {
- struct ipt_get_entries get;

+ case IPT_SO_GET _INFO:

+ ret = get_info(user, len, 0);

+ break;

if (*len < sizeof(get)) {

duprintf("get_entries: %u < %u\n", *len, sizeof(get));
ret = -EINVAL,

} else if (copy_from_user(&get, user, sizeof(get)) != 0) {

Page 33 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

ret = -EFAULT;
} else if (*len != sizeof(struct ipt_get_entries) + get.size) {
duprintf("get_entries: %u != %u\n", *len,
sizeof(struct ipt_get_entries) + get.size);
ret = -EINVAL;
- }else
- ret = get_entries(&get, user);
+ case IPT_SO_GET_ENTRIES:
+ ret = get_entries(user, len);
break;

-}

case IPT_SO_GET_REVISION_MATCH:
case IPT_SO_GET_REVISION_TARGET: {
@@ -1336,6 +2203,9 @@ static struct ipt_target ipt_standard_ta
.name = IPT_STANDARD_TARGET,
targetsize = sizeof(int),
family = AF_INET,
+#ifdef CONFIG_COMPAT
+ .compat = &compat_ipt_standard_fn,
+#endif
3

static struct ipt_target ipt_error_target ={
@@ -1350,9 +2220,11 @@ static struct nf_sockopt_ops ipt_sockopt
.set_optmin = IPT_BASE_CTL,
.set_optmax = IPT_SO_SET_MAX+1,
.set =do_ipt_set_ctl,
+ .compat_set = compat_do_ipt_set_ctl,
.get_optmin = IPT_BASE_CTL,
.get_optmax = IPT_SO_GET_MAX+1,
.get =do_ipt_get_ctl,
+ .compat_get = compat_do_ipt_get_ctl,

I3

static struct ipt_match icmp_matchstruct = {
diff --git a/net/netfilter/x_tables.c b/net/netfilter/x_tables.c
index a657ab5..feb8a%e 100644
--- a/net/netfilter/x_tables.c
+++ b/net/netfilter/x_tables.c
@@ -38,6 +38,7 @@ struct xt_af {
struct list_head match;
struct list_head target;
struct list_head tables;
+ struct mutex compat_mutex;

|8

static struct xt_af *xt;

Page 34 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -272,6 +273,54 @@ int xt_check _match(const struct xt_match

}
EXPORT_SYMBOL_GPL(xt_check _match);

+#ifdef CONFIG_COMPAT

+int xt_compat_match(void *match, void **dstptr, int *size, int convert)
+

+ struct xt_match *m;

+ struct compat_xt_entry_match *pcompat_m;

+ struct xt_entry_match *pm;

+ u_intl6_t msize;

+ int off, ret;
+
+ret=0;

+ m = ((struct xt_entry_match *)match)->u.kernel.match;

+ off = XT_ALIGN(m->matchsize) - COMPAT_XT_ALIGN(m->matchsize);

+ switch (convert) {

case COMPAT_TO_USER:

pm = (struct xt_entry_match *)match;
msize = pm->u.user.match_size;

if (__copy_to_user(*dstptr, pm, msize)) {
ret = -EFAULT;
break;

}

msize -= off;

if (put_user(msize, (u_int16_t *)*dstptr))
ret = -EFAULT;

*size -= off;

*dstptr += msize;

break;

case COMPAT_FROM_USER:
pcompat_m = (struct compat_xt_entry _match *)match;
pm = (struct xt_entry_match *)*dstptr;
msize = pcompat_m->u.user.match_size;
memcpy(pm, pcompat_m, msize);

msize += off;

pm->u.user.match_size = msize;

*size += off;

*dstptr += msize;

break;

case COMPAT_CALC_SIZE:

*size += off;

break;

default:

ret = -ENOPROTOOPT;

break;

T T i e T S S S S S S S A S T T T i T T T

+

+}

+ return ret;

Page 35 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+}

+EXPORT_SYMBOL_GPL(xt_compat_match);

+#endif

+

int xt_check_target(const struct xt_target *target, unsigned short family,
unsigned int size, const char *table, unsigned int hook_mask,
unsigned short proto, int inv_proto)

@@ -301,6 +350,54 @@ int xt_check_target(const struct xt_targ

}
EXPORT_SYMBOL_GPL(xt_check_target);

+#ifdef CONFIG_COMPAT

+int xt_compat_target(void *target, void **dstptr, int *size, int convert)
+

+ struct xt_target *t;

+ struct compat_xt_entry_target *pcompat;

+ struct xt_entry_target *pt;

+u_intl6 _ttsize;

+ int off, ret;
+
+ret=0;

+t = ((struct xt_entry_target *)target)->u.kernel.target;

+ off = XT_ALIGN(t->targetsize) - COMPAT_XT_ALIGN(t->targetsize);
+ switch (convert) {

+ case COMPAT_TO_USER:

+ pt = (struct xt_entry_target *)target;

+ tsize = pt->u.user.target_size;

+ if (__copy_to_user(*dstptr, pt, tsize)) {
+ ret=-EFAULT,

+ break;

+ }

+ tsize -= off;

+ if (put_user(tsize, (u_intl6_t *)*dstptr))
+ ret=-EFAULT;

+ *size -= off;

+ *dstptr += tsize;

+ break;

+ case COMPAT_FROM_USER:

+ pcompat = (struct compat_xt_entry_target *)target;
+ pt = (struct xt_entry_target *)*dstptr;

+ tsize = pcompat->u.user.target_size;
+ memcpy(pt, pcompat, tsize);

+ tsize += off;

+ pt->u.user.target_size = tsize;

+ *size += off;

+ *dstptr += tsize;

+ break;

+ case COMPAT_CALC_SIZE:

Page 36 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ *size += off;

+ break;

+ default:

+ ret = -ENOPROTOOPT;

+ break;

+}

+ return ret;

+}
+EXPORT_SYMBOL_GPL(xt_compat_target);
+#endif

+

struct xt_table_info *xt_alloc_table_info(unsigned int size)

{

struct xt_table_info *newinfo;

@@ -371,6 +468,19 @@ void xt_table_unlock(struct xt_table *ta

}
EXPORT_SYMBOL_GPL(xt_table_unlock);

+#ifdef CONFIG_COMPAT

+void xt_compat_lock(int af)

H

+ mutex_lock(&xt[af].compat_mutex);

+}
+EXPORT_SYMBOL_GPL(xt_compat_lock);
+

+void xt_compat_unlock(int af)

+H

+ mutex_unlock(&xt[af].compat_mutex);

+}
+EXPORT_SYMBOL_GPL(xt_compat_unlock);
+#endif

struct xt_table_info *
xt_replace_table(struct xt_table *table,
@@ -671,6 +781,9 @@ static int __init xt_init(void)

for (i=0;i < NPROTO; i++) {
mutex_init(&xt[i].mutex);

+#ifdef CONFIG_COMPAT

+ mutex_init(&xt[i].compat_mutex);

+#endif
INIT_LIST_HEAD(&xt[i].target);
INIT_LIST_HEAD(&xt[i].match);
INIT_LIST_HEAD(&xt[i].tables);

File Attachnents

1) diff-nms-netfilter-ipt-conpat-20060329,

downl oaded 649 ti nes

Page 37 of 37 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=getfile&id=102
https://new-forum.openvz.org/index.php

