
Subject: [PATCH 6/6 mm] memcgroup: revert swap_state mods
Posted by Hugh Dickins on Fri, 09 Nov 2007 07:14:22 GMT
View Forum Message <> Reply to Message

If we're charging rss and we're charging cache, it seems obvious that
we should be charging swapcache - as has been done. But in practice
that doesn't work out so well: both swapin readahead and swapoff leave
the majority of pages charged to the wrong cgroup (the cgroup that
happened to read them in, rather than the cgroup to which they belong).

(Which is why unuse_pte's GFP_KERNEL while holding pte lock never
showed up as a problem: no allocation was ever done there, every page
read being already charged to the cgroup which initiated the swapoff.)

It all works rather better if we leave the charging to do_swap_page and
unuse_pte, and do nothing for swapcache itself: revert mm/swap_state.c
to what it was before the memory-controller patches. This also speeds
up significantly a contained process working at its limit: because it
no longer needs to keep waiting for swap writeback to complete.

Is it unfair that swap pages become uncharged once they're unmapped,
even though they're still clearly private to particular cgroups? For
a short while, yes; but PageReclaim arranges for those pages to go to
the end of the inactive list and be reclaimed soon if necessary.

shmem/tmpfs pages are a distinct case: their charging also benefits
from this change, but their second life on the lists as swapcache
pages may prove more unfair - that I need to check next.

Signed-off-by: Hugh Dickins <hugh@veritas.com>

Insert just after 5/6: the tree builds okay if it goes earlier, just after
memory-controller-bug_on.patch, but 5/6 fixes OOM made more likely by 6/6.
Alternatively, hand edit all of the mm/swap_state.c mods out of all of the
memory-controller patches which modify it.

 mm/swap_state.c | 15 ++-------------
 1 file changed, 2 insertions(+), 13 deletions(-)

--- patch5/mm/swap_state.c	2007-11-08 15:58:50.000000000 +0000
+++ patch6/mm/swap_state.c	2007-11-08 16:01:11.000000000 +0000
@@ -17,7 +17,6 @@
 #include <linux/backing-dev.h>
 #include <linux/pagevec.h>
 #include <linux/migrate.h>
-#include <linux/memcontrol.h>

 #include <asm/pgtable.h>

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1876
https://new-forum.openvz.org/index.php?t=rview&th=4494&goto=22984#msg_22984
https://new-forum.openvz.org/index.php?t=post&reply_to=22984
https://new-forum.openvz.org/index.php

@@ -79,11 +78,6 @@ static int __add_to_swap_cache(struct pa
 	BUG_ON(!PageLocked(page));
 	BUG_ON(PageSwapCache(page));
 	BUG_ON(PagePrivate(page));
-
-	error = mem_cgroup_cache_charge(page, current->mm, gfp_mask);
-	if (error)
-		goto out;
-
 	error = radix_tree_preload(gfp_mask);
 	if (!error) {
 		write_lock_irq(&swapper_space.tree_lock);
@@ -95,14 +89,10 @@ static int __add_to_swap_cache(struct pa
 			set_page_private(page, entry.val);
 			total_swapcache_pages++;
 			__inc_zone_page_state(page, NR_FILE_PAGES);
-		} else
-			mem_cgroup_uncharge_page(page);
-
+		}
 		write_unlock_irq(&swapper_space.tree_lock);
 		radix_tree_preload_end();
-	} else
-		mem_cgroup_uncharge_page(page);
-out:
+	}
 	return error;
 }

@@ -143,7 +133,6 @@ void __delete_from_swap_cache(struct pag
 	BUG_ON(PageWriteback(page));
 	BUG_ON(PagePrivate(page));

-	mem_cgroup_uncharge_page(page);
 	radix_tree_delete(&swapper_space.page_tree, page_private(page));
 	set_page_private(page, 0);
 	ClearPageSwapCache(page);

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

