Subject: Re: LSM and Containers
Posted by Peter Dolding on Wed, 24 Oct 2007 00:07:50 GMT

View Forum Message <> Reply to Message

Crispin Cowan wrote:

> Serge E. Hallyn wrote:

>

>> Quoting Crispin Cowan (crispin@crispincowan.com):

>>

>>

>>> |t is my understanding of containers that they are intended to be a
>>> *[ightweight* virtualization technique, giving each container

>>> effectively a private copy of identical instances of the host OS.

>>>

>>> |f you want to rent out divergent distros, kernels, etc. then it seems
>>> to me that heavier virtualization like Xen, KVM, VMware, etc. are the
>>> right answer, rather than trying to force difficult kernel solutions

>>> into the container and LSM features into the kernel.

>>>

>>>

>> For different kernels, yes, but unless you pick two distros which

>> require incompatible kernel features (?) | don't see running, say,

>> gentoo, fedora, and ubuntu under different containers as a problem.
>>

>> Perhaps the biggest reason not to do that, speaking practically, is that
>> you miss out on some of the ability to share /usr, /lib, etc readonly

>> among containers to save overall disk space.

>>

>>

> This is why it just doesn't seem very reasonable. People who want to do
> that will just use KVM or Xen. People who want the efficiency of

> lightweight containers, and have enough load pressure to care, can just
> have one Fedora physical box with many containers all running Fedora,
> and another openSUSE physical box with many containers all running openSUSE.
>

> | can see how you *could* manage to run different distros in different

> containers, but you would have to make many compromises. No sharing of
> read-only disk as Serge said. You would have to pick one kernel, as no 2
> distros | know of actually run the same kernel. You would have to pick
> one set of device drivers, and one LSM. By the time you deal with all

> this crap, just using KVM or Xen starts to look good :-)

>

Sorry the reason for doing it is 1 set of driver. In particular

Opengl. KVM, Xen, Lguest... All virtual machines cannot handle it
effectively so you have one very high comprise. Containers can.

Same with other devices some devices don't take well at all being
wrapped up in KVM, Xen and other systems. Running the same kernel is

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=2041
https://new-forum.openvz.org/index.php?t=rview&th=4322&goto=22779#msg_22779
https://new-forum.openvz.org/index.php?t=post&reply_to=22779
https://new-forum.openvz.org/index.php

not a issue to me.

Most distributions | have run with standard from kernel.org with there
LSM. Nothing else added to kernel. So the different kernel is null

and void. If LSM are rebuild we will see distro kernels with support

for a broad range of distro support. You may have a distro that allows
like the top 10 server Distributions to be run under it. Of course you

are not going to be using any stock kernel from those Distros if they
don't support running other distros. | would not bring it up if | had

not run OpenSuse Fedora and Debian and other distros of the same kernel
before. How simple in initrd load the LSM for the Distro that was

it. There is no technical problem at the kernel for doing it. Also

part of the reason why | despise static LSM's becoming only option cross
distro performance testing of a kernel to see if there is a difference

will be made harder since | will have to build the kernel more than

once. Now when | get to containers you are now saying | cannot do the
same thing.

| know current LSM model does not fit well for this. Because its a
giant hooking solution. This solution is not suitable to exist well

with containers and massively limiting on security improvements to the
over all os that can be done..

The LSM model needs ripping in two to work great with containers and
along the way allow applications and users to take care of there own
problems.

Enforcement modules and Controllers.

Controllers work on threads and processors created to allocate security
limitations. LSM level controller can grant higher security access to
threads and processors than what they all ready have to the level of the
LSM. User/program level controllers can only remove permissions to do
things this is most likely better as a feature of the Enforcement

modules. LSM level controllers have to be attached to kernel or a
security containers. Since a container could all ready have limits from
another LSMs put on it could only allocate permissions inside those limts.

Enforcement is exactly that. Enforcement modules would be like posix
file caps and so on. An option has to be choose here if Enforcement
modules have to report to LSM level controller on secuirty change
request to lower and expand or only to expand or not at all. Not at all
being default because it could be a new feature the controller does not
know how to handle or want to handle. Most likely this would be
controller option on what if any information it wants out of the
Enforcement modules. Default operation of all enforcement modules is
like posix file caps is lower only. No option to expand what has all
ready been given. With a LSM controller asking to be given notice of

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

change of a Enforcement section it can allow raising or forbid
lowering. Applications developers like GUI Filemanagers wine... Can
depend on the Enforcement parts always being there.

This is a overall system wide upgrade of security that does not falil
completely just because you disable the contoller. Because if all
applications are doing there own internal thread based and process id
based enforcements what can be far tighter than what any controller can
do since they know what the application should be doing where.

| hear different people asking for a LSM to be build into kernel. This

is not a requirement. The enforcement features of LSM's are. Each
one of the enforcement features is a upgrade to the overall security of
the operating system no matter the LSM loaded or even if LSM is loaded.

Basically just like containers take responsibility for parts

individually when put into once piece become a virtual server. The
same needs to be done with LSM's. The controller is the final thing
that joins the parts up. Not coming with the parts in one huge blob as
LSM do now. The huge blob problem is why they don't want to work right
containers. Over head is small with

Controllers. From Enforcement module to Controller is always the same
depth. When Controller goes to change permissions its checked against
the list its allowed. At this point does not matter if you are 1 deep

or 1000 deep. Since there is no need to go any deeper or run other
Controllers to get information. Just the first Controller the one you

might statically build in gets told it has every permission to do

whatever it sees fit maybe. The first Controller at build time could

have its rights limited. Just like selinux strict mode for all. As you

can see 100 percent the same path level no matter what. Only thing that
changes in what controller you are in.

As bad as it sounds to some people doing this will lower the security
difference between selinux apparmor or other LSM's . This forces user
and security friendly solutions out of LSM makers. Yes true completion
to produce the best and leave users as least exposed as able. Not my
LSM is better than yours arguments with complexity of comparing. It
will be simpler to compare LSM's ok what enforcement modules does it
control. Does that cover the area | need. Then look at how it
controls them and choose.

Note LSM controllers could be Security Containers. Just one Container
is set default off the start line.

Peter Dolding

Containers mailing list
Containers@lists.linux-foundation.org

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

https://lists.linux-foundation.org/mailman/listinfo/containers

Page 4 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

