
Subject: Re: [RFC] cpuset update_cgroup_cpus_allowed
Posted by David Rientjes on Mon, 15 Oct 2007 18:49:02 GMT
View Forum Message <> Reply to Message

On Mon, 15 Oct 2007, Paul Jackson wrote:

> --- 2.6.23-mm1.orig/kernel/cpuset.c	2007-10-14 22:24:56.268309633 -0700
> +++ 2.6.23-mm1/kernel/cpuset.c	2007-10-14 22:34:52.645364388 -0700
> @@ -677,6 +677,64 @@ done:
> }
>
> /*
> + * update_cgroup_cpus_allowed(cont, cpus)
> + *
> + * Keep looping over the tasks in cgroup 'cont', up to 'ntasks'
> + * tasks at a time, setting each task->cpus_allowed to 'cpus',
> + * until all tasks in the cgroup have that cpus_allowed setting.
> + *
> + * The 'set_cpus_allowed()' call cannot be made while holding the
> + * css_set_lock lock embedded in the cgroup_iter_* calls, so we stash
> + * some task pointers, in the tasks[] array on the stack, then drop
> + * that lock (cgroup_iter_end) before looping over the stashed tasks
> + * to update their cpus_allowed fields.
> + *
> + * Making the const 'ntasks' larger would use more stack space (bad),
> + * and reduce the number of cgroup_iter_start/cgroup_iter_end calls
> + * (good). But perhaps more importantly, it could allow any bugs
> + * lurking in the 'need_repeat' looping logic to remain hidden longer.
> + * So keep ntasks rather small, to ensure any bugs in this loop logic
> + * are exposed quickly.
> + */
> +static void update_cgroup_cpus_allowed(struct cgroup *cont, cpumask_t *cpus)
> +{
> +	int need_repeat = true;
> +
> +	while (need_repeat) {
> +		struct cgroup_iter it;
> +		const int ntasks = 10;
> +		struct task_struct *tasks[ntasks];
> +		struct task_struct **p, **q;
> +
> +		need_repeat = false;
> +		p = tasks;
> +
> +		cgroup_iter_start(cont, &it);
> +		while (1) {
> +			struct task_struct *t;
> +

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=902
https://new-forum.openvz.org/index.php?t=rview&th=4221&goto=21744#msg_21744
https://new-forum.openvz.org/index.php?t=post&reply_to=21744
https://new-forum.openvz.org/index.php

> +			t = cgroup_iter_next(cont, &it);
> +			if (!t)
> +				break;
> +			if (cpus_equal(*cpus, t->cpus_allowed))
> +				continue;

By making this cpus_equal() and not cpus_intersects(), you're trying to
make sure that t->cpus_allowed is always equal to *cpus for each task in
the iterator.

> +			if (p == tasks + ntasks) {
> +				need_repeat = true;
> +				break;
> +			}
> +			get_task_struct(t);
> +			*p++ = t;
> +		}
> +		cgroup_iter_end(cont, &it);
> +
> +		for (q = tasks; q < p; q++) {
> +			set_cpus_allowed(*q, *cpus);
> +			put_task_struct(*q);
> +		}
> +	}
> +}

Yet by not doing any locking here to prevent a cpu from being
hot-unplugged, you can race and allow the hot-unplug event to happen
before calling set_cpus_allowed(). That makes this entire function a
no-op with set_cpus_allowed() returning -EINVAL for every call, which
isn't caught, and no error is reported to userspace.

Now all the tasks in the cpuset have an inconsistent state with respect to
their p->cpuset->cpus_allowed, because that was already updated in
update_cpumask(). When userspace checks that value via the 'cpus' file,
this is the value returned which is actually not true at all for any of
the tasks in 'tasks'.

		David

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

