
Subject: [RFC] cpuset update_cgroup_cpus_allowed
Posted by Paul Jackson on Mon, 15 Oct 2007 07:11:15 GMT
View Forum Message <> Reply to Message

Paul M, David R, others -- how does this look?

From: Paul Jackson <pj@sgi.com>

Update the per-task cpus_allowed of each task in a cgroup
whenever it has a cpuset whose 'cpus' mask changes.

The change to basing cpusets on the cgroup (aka container)
infrastructure broke an essential cpuset hack. The old cpuset
code had used the act of reattaching a task to its own cpuset
(writing its pid back into the same 'tasks' file it was already
in) to trigger the code that updates the cpus_allowed cpumask
in the task struct to the cpus_allowed cpumask dictated by that
tasks cpuset.

This was a hack to avoid having code in the main scheduler
code path that checked for changes in the cpus_allowed by each
tasks cpuset, which would have unacceptable performance impact
on the scheduler.

The cgroup code avoids calling the update callout if a task
is reattached to the cgroup it is already attached to do.
This turned reattaching a task to its own cpuset into a no-op,
making it impossible to change a tasks CPU placement by changing
the cpus_allowed of the cpuset containing that task.

The right thing to do would be to have the code that updates a
cpusets cpus_allowed walk through each task currently in that
cpuset and update the cpus_allowed in that tasks task_struct.

This change does that, adding code called from cpuset
update_cpumask() that updates the task_struct cpus_allowed of
each task in a cgroup whenever it has a cpuset whose 'cpus'
is changed.

Signed-off-by: Paul Jackson <pj@sgi.com>

This patch applies anywhere after:
 cpusets-decrustify-cpuset-mask-update-code.patch

 Documentation/cpusets.txt | 23 +++++----------
 kernel/cpuset.c | 68 +++-----

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=231
https://new-forum.openvz.org/index.php?t=rview&th=4221&goto=21699#msg_21699
https://new-forum.openvz.org/index.php?t=post&reply_to=21699
https://new-forum.openvz.org/index.php

 kernel/sched.c | 3 ++
 mm/pdflush.c | 3 ++
 4 files changed, 76 insertions(+), 21 deletions(-)

--- 2.6.23-mm1.orig/kernel/cpuset.c	2007-10-14 22:24:56.268309633 -0700
+++ 2.6.23-mm1/kernel/cpuset.c	2007-10-14 22:34:52.645364388 -0700
@@ -677,6 +677,64 @@ done:
 }

 /*
+ * update_cgroup_cpus_allowed(cont, cpus)
+ *
+ * Keep looping over the tasks in cgroup 'cont', up to 'ntasks'
+ * tasks at a time, setting each task->cpus_allowed to 'cpus',
+ * until all tasks in the cgroup have that cpus_allowed setting.
+ *
+ * The 'set_cpus_allowed()' call cannot be made while holding the
+ * css_set_lock lock embedded in the cgroup_iter_* calls, so we stash
+ * some task pointers, in the tasks[] array on the stack, then drop
+ * that lock (cgroup_iter_end) before looping over the stashed tasks
+ * to update their cpus_allowed fields.
+ *
+ * Making the const 'ntasks' larger would use more stack space (bad),
+ * and reduce the number of cgroup_iter_start/cgroup_iter_end calls
+ * (good). But perhaps more importantly, it could allow any bugs
+ * lurking in the 'need_repeat' looping logic to remain hidden longer.
+ * So keep ntasks rather small, to ensure any bugs in this loop logic
+ * are exposed quickly.
+ */
+static void update_cgroup_cpus_allowed(struct cgroup *cont, cpumask_t *cpus)
+{
+	int need_repeat = true;
+
+	while (need_repeat) {
+		struct cgroup_iter it;
+		const int ntasks = 10;
+		struct task_struct *tasks[ntasks];
+		struct task_struct **p, **q;
+
+		need_repeat = false;
+		p = tasks;
+
+		cgroup_iter_start(cont, &it);
+		while (1) {
+			struct task_struct *t;
+
+			t = cgroup_iter_next(cont, &it);
+			if (!t)

Page 2 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+				break;
+			if (cpus_equal(*cpus, t->cpus_allowed))
+				continue;
+			if (p == tasks + ntasks) {
+				need_repeat = true;
+				break;
+			}
+			get_task_struct(t);
+			*p++ = t;
+		}
+		cgroup_iter_end(cont, &it);
+
+		for (q = tasks; q < p; q++) {
+			set_cpus_allowed(*q, *cpus);
+			put_task_struct(*q);
+		}
+	}
+}
+
+/*
 * Call with manage_mutex held. May take callback_mutex during call.
 */

@@ -684,7 +742,6 @@ static int update_cpumask(struct cpuset
 {
 	struct cpuset trialcs;
 	int retval;
-	int cpus_changed, is_load_balanced;

 	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
 	if (cs == &top_cpuset)
@@ -713,16 +770,15 @@ static int update_cpumask(struct cpuset
 	if (retval < 0)
 		return retval;

-	cpus_changed = !cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed);
-	is_load_balanced = is_sched_load_balance(&trialcs);
+	if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
+		return 0;

 	mutex_lock(&callback_mutex);
 	cs->cpus_allowed = trialcs.cpus_allowed;
 	mutex_unlock(&callback_mutex);

-	if (cpus_changed && is_load_balanced)
-		rebuild_sched_domains();
-
+	update_cgroup_cpus_allowed(cs->css.cgroup, &cs->cpus_allowed);

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+	rebuild_sched_domains();
 	return 0;
 }

--- 2.6.23-mm1.orig/Documentation/cpusets.txt	2007-10-14 22:24:56.236309148 -0700
+++ 2.6.23-mm1/Documentation/cpusets.txt	2007-10-14 22:25:59.953276792 -0700
@@ -523,21 +523,14 @@ from one cpuset to another, then the ker
 memory placement, as above, the next time that the kernel attempts
 to allocate a page of memory for that task.

-If a cpuset has its CPUs modified, then each task using that
-cpuset does _not_ change its behavior automatically. In order to
-minimize the impact on the critical scheduling code in the kernel,
-tasks will continue to use their prior CPU placement until they
-are rebound to their cpuset, by rewriting their pid to the 'tasks'
-file of their cpuset. If a task had been bound to some subset of its
-cpuset using the sched_setaffinity() call, and if any of that subset
-is still allowed in its new cpuset settings, then the task will be
-restricted to the intersection of the CPUs it was allowed on before,
-and its new cpuset CPU placement. If, on the other hand, there is
-no overlap between a tasks prior placement and its new cpuset CPU
-placement, then the task will be allowed to run on any CPU allowed
-in its new cpuset. If a task is moved from one cpuset to another,
-its CPU placement is updated in the same way as if the tasks pid is
-rewritten to the 'tasks' file of its current cpuset.
+If a cpuset has its 'cpus' modified, then each task in that cpuset
+will have its allowed CPU placement changed immediately. Similarly,
+if a tasks pid is written to a cpusets 'tasks' file, in either its
+current cpuset or another cpuset, then its allowed CPU placement is
+changed immediately. If such a task had been bound to some subset
+of its cpuset using the sched_setaffinity() call, the task will be
+allowed to run on any CPU allowed in its new cpuset, negating the
+affect of the prior sched_setaffinity() call.

 In summary, the memory placement of a task whose cpuset is changed is
 updated by the kernel, on the next allocation of a page for that task,
--- 2.6.23-mm1.orig/kernel/sched.c	2007-10-14 22:24:56.340310725 -0700
+++ 2.6.23-mm1/kernel/sched.c	2007-10-14 22:25:59.973277096 -0700
@@ -51,6 +51,7 @@
 #include <linux/rcupdate.h>
 #include <linux/cpu.h>
 #include <linux/cpuset.h>
+#include <linux/cgroup.h>
 #include <linux/percpu.h>
 #include <linux/cpu_acct.h>
 #include <linux/kthread.h>
@@ -4335,9 +4336,11 @@ long sched_setaffinity(pid_t pid, cpumas
 	if (retval)

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 		goto out_unlock;

+	cgroup_lock();
 	cpus_allowed = cpuset_cpus_allowed(p);
 	cpus_and(new_mask, new_mask, cpus_allowed);
 	retval = set_cpus_allowed(p, new_mask);
+	cgroup_unlock();

 out_unlock:
 	put_task_struct(p);
--- 2.6.23-mm1.orig/mm/pdflush.c	2007-10-14 22:23:28.710981177 -0700
+++ 2.6.23-mm1/mm/pdflush.c	2007-10-14 22:25:59.989277340 -0700
@@ -21,6 +21,7 @@
 #include <linux/writeback.h>	// Prototypes pdflush_operation()
 #include <linux/kthread.h>
 #include <linux/cpuset.h>
+#include <linux/cgroup.h>
 #include <linux/freezer.h>

@@ -187,8 +188,10 @@ static int pdflush(void *dummy)
 	 * This is needed as pdflush's are dynamically created and destroyed.
 	 * The boottime pdflush's are easily placed w/o these 2 lines.
 	 */
+	cgroup_lock();
 	cpus_allowed = cpuset_cpus_allowed(current);
 	set_cpus_allowed(current, cpus_allowed);
+	cgroup_unlock();

 	return __pdflush(&my_work);
 }

--
 I won't rest till it's the best ...
 Programmer, Linux Scalability
 Paul Jackson <pj@sgi.com> 1.650.933.1373

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

