
Subject: Re: [RFC] [PATCH 0/7] Some basic vserver infrastructure
Posted by Sam Vilain on Tue, 21 Mar 2006 23:12:31 GMT
View Forum Message <> Reply to Message

Dave Hansen wrote:

>>This patch is simple, but does not handle SMP scalability very well
>>(you'll get a lot of cacheline problems when you start actually using
>>the container structure; the hashing helps a lot there)
>>
>>
>Could you elaborate a bit on this one? What has cacheline problems?
>
>

OK, on reflection this probably doesn't belong this early in the
series. It only helps speed up lookup by IDs which is only an SMP
speed enhancement if you expect a lot of those (eg, when storing the
XIDs on another subsystem, such as a filesystem) and unusual things like
creating/destroying a lot of vservers quickly. I'll pull it out.

I tried to make it as basic as possible, but my basic problem with the
patch you linked to is that it shouldn't be so small that you don't get
a decent bunch of the internal API functions listed in description of
part 1 of the set
(http://vserver.utsl.gen.nz/patches/utsl/2.6.16-rc4-vsi/01-VS erver-Umbrella.diff)

>>and does not provide functions such as looking up a container by ID etc.
>>
>>
>
>We need something so simple that we probably don't even deal with ids.
>I believe that Eric claims that we don't really need container _ids_.
>For instance, the filesystem namespaces have no ids, and work just fine.
>
>

For actual namespace structures themselves that are virtualising real
things, I agree entirely.

But I think the whole point of this patchset (which sadly vger ate for
the wider audience, and I still don't know why) is to group tasks and to
give userland, and hence the administrator, something tangible with
which to group processes with and tack namespace structures onto. I can
split out the ID related stuff into another patch, but it would need to
go back in before a useful syscall interface can be added. I'll
consider it anyway, though.

Page 1 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=223
https://new-forum.openvz.org/index.php?t=rview&th=377&goto=2136#msg_2136
https://new-forum.openvz.org/index.php?t=post&reply_to=2136
https://new-forum.openvz.org/index.php

Note that a given vx_info structure still might share namespace
structures with other vx_info objects - this is what I was alluding to
with the "we haven't made any restrictions on the nature of
virtualisation yet" comment. All we've made is the (XID, PID) tuple
(although the default for XID=0 is that all processes are visible in one
big PID space). The intention is that flags will control how you want
your PIDs to work for that vserver.

The only thing that they can't do is share processes - it is a one to
many relationship. However, if there can be a parent/child
containership relationship on the XIDs themselves, you can still achieve
the behaviour of these unusual situations. I'm working on the
assumption that if we ever have to migrate trees of XIDs then we can
virtualise how they look inside a vserver using flags.

Eric, perhaps you can comment or refer to the earlier post where you
made this argument. I tried to follow it but perhaps I missed the jist
of one of the messages or one of the most important messages entirely.

>By starting painfully simply, we can build on complexity in bits, and
>justify it as we go.
>
>

This is my aim too! I'll keep chopping and changing.

>>And also because the acronym "vx" makes the API look nice, at least to
>>mine and Herbert's eyes, then when you go to the network virtualisation
>>you get "nx_info", etc. However I'm thinking any of these terms might
>>also be right:
>>
>> - "vserver" spelt in full
>> - family
>> - container
>> - jail
>> - task_ns (sort for namespace)
>>
>>Perhaps we can get a ruling from core team on this one, as it's
>>aesthetics :-).
>>
>>
>
>I was in a meeting with a few coworkers, and we were arguing a bit about
>naming. One person there was a manager-type who didn't have any direct
>involvement in the project. We asked him which naming was more clear.
>
>We need to think a bit like that. What is more clear to somebody who
>has never read the code? (Hint "vx_" means nothing. :)

Page 2 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>
>

OK, so let's look at all of the various names that stem from the use of
the term "XID" and try to come up with a good naming system for each. I
invite the OpenVZ team, Eric and anyone else to put forward their names
as well.

Sorry if this is a bit long. Again I invite anyone at all to come
forward with a preference or list another set of alternatives. Let's
nail this one down, it comes up every time any patchset like this is put
forward.

Linux-VServer:

 CONFIG_VSERVER - config option
 typedef unsigned int xid_t;
 struct vx_info;
 task_struct->vx_info
 task_struct->xid
 vx_task_xid(struct task*) - get an XID from a task_struct
 vx_current_xid - get XID for current
 vx_info_state(struct vx_info*, VXS_FOO) - does vx_info have state
 create_vx_info - creates a new context and "hashes" it
 lookup_vx_info - lookup a vx_info by xid
 get_vx_info - increase refcount of a vx_info
 [...]
 release_vx_info - decrease the process count for a vx_info
 task_get_vx_info - like get_vx_info, but by process
 vx_migrate_task - join task to a vx_info
 vxlprintk - debugging printk (for CONFIG_VSERVER_DEBUG)
 vxh_alloc_vx_info - history tracing (for CONFIG_VSERVER_HISTORY)
 constants:
 VXS_FOO - state bits
 VXF_FOO - vserver flags (to select features)
 VXC_FOO - vserver-specific capabilities
 VCMD_get_version - vserver subcommand names
 VCI_VERSION - perhaps the legacy of this one should die.

Using the term "vserver" and ID term "vsid":

 CONFIG_VSERVER - config option
 typedef unsigned int vsid_t;
 struct vserver
 task_struct->vserver
 task_struct->vsid
 vserver_task_vsid(struct task*) - get an VSID from a task_struct
 vserver_current_vsid - get VSID for current

Page 3 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 vserver_state(struct vserver*, VS_STATE_FOO) - does vserver hav...
 create_vserver - creates a new context and "hashes" it
 lookup_vserver - lookup a vserver by vsid
 get_vserver - increase refcount of a vserver
 [...]
 release_vserver - decrease the process count for a vserver
 task_get_vserver - like get_vserver, but by process
 vserver_migrate_task - join task to a vserver
 vserver_debug - debugging printk (for CONFIG_VSERVER_DEBUG)
 vserver_hist_alloc_vserver - history tracing (for CONFIG_VSERVER...
 constants:
 VS_STATE_FOO - state bits
 VS_FLAG_FOO - vserver flags (to select features)
 VS_CAP_FOO - vserver-specific capabilities
 VS_CMD_get_version - vserver subcommand names
 VS_VCI_VERSION

Using the term "container" and ID term "cid":

 CONFIG_CONTAINERS - config option
 typedef unsigned int cid_t;
 struct container
 task_struct->container
 task_struct->cid
 container_task_cid(struct task*) - get an CID from a task_struct
 container_current_cid - get CID for current
 container_state(struct container*, CONTAINER_STATE_FOO) - does c...
 create_container - creates a new context and "hashes" it
 lookup_container - lookup a container by cid
 get_container - increase refcount of a container
 [...]
 release_container - decrease the process count for a container
 task_get_container - like get_container, but by process
 contain_task - join task to a container
 container_debug - debugging printk (for CONFIG_CONTAINER_DEBUG)
 container_hist_alloc_container - history tracing (for CONFIG_CON...
 constants:
 CONTAINER_STATE_FOO - state bits
 CONTAINER_FLAG_FOO - container flags (to select features)
 CONTAINER_CAP_FOO - container-specific capabilities
 CONTAINER_CMD_get_version - container subcommand names
 CONTAINER_VCI_VERSION

Using the term "box" and ID term "boxid":

 CONFIG_BOXES - config option
 typedef unsigned int boxid_t;
 struct box

Page 4 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 task_struct->box
 task_struct->boxid
 box_task_boxid(struct task*) - get an BOXID from a task_struct
 box_current_boxid - get BOXID for current
 box_state(struct box*, BOX_STATE_FOO) - does box have state
 create_box - creates a new context and "hashes" it
 lookup_box - lookup a box by boxid
 get_box - increase refcount of a box
 [...]
 release_box - decrease the process count for a box
 task_get_box - like get_box, but by process
 box_migrate_task - join task to a box
 box_printk - debugging printk (for CONFIG_BOXES_DEBUG)
 box_hist_alloc_box - history tracing (for CONFIG_BOXES_HISTORY)
 constants:
 BOX_STATE_FOO - state bits
 BOX_FLAG_FOO - box flags (to select features)
 BOX_CAP_FOO - box-specific capabilities
 BOX_CMD_get_version - box subcommand names
 BOX_VCI_VERSION

Using the term "family" and ID term "fid":

 CONFIG_FAMILY - config option
 typedef unsigned int fid_t;
 struct family
 task_struct->family
 task_struct->fid
 task_fid(struct task*) - get an FID from a task_struct
 family_current_fid - get FID for current
 family_state(struct family*, FAMILY_STATE_FOO) - does family hav...
 create_family - creates a new context and "hashes" it
 lookup_family - lookup a family by fid
 get_family - increase refcount of a family
 [...]
 release_family - decrease the process count for a family
 task_get_family - like get_family, but by process
 family_adopt_task - join task to a family
 family_printk - debugging printk (for CONFIG_FAMILY_DEBUG)
 family_hist_alloc_family - history tracing (for CONFIG_FAMILY_HI...
 constants:
 FAMILY_STATE_FOO - state bits
 FAMILY_FLAG_FOO - family flags (to select features)
 FAMILY_CAP_FOO - family-specific capabilities
 FAMILY_CMD_get_version - family subcommand names
 FAMILY_VCI_VERSION

Using the term "task_ns" and ID term "nsid":

Page 5 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

 CONFIG_TASK_NS - config option
 typedef unsigned int nsid_t;
 struct task_ns
 task_struct->task_ns
 task_struct->nsid
 task_nsid(struct task*) - get an NSID from a task_struct
 current_nsid - get NSID for current
 task_ns_state(struct task_ns*, TASK_NS_STATE_FOO) - does task_ns hav...
 create_task_ns - creates a new context and "hashes" it
 lookup_task_ns - lookup a task_ns by nsid
 get_task_ns - increase refcount of a task_ns
 [...]
 release_task_ns - decrease the process count for a task_ns
 task_get_task_ns - like get_task_ns, but by process
 task_ns_migrate_task - join task to a task_ns
 task_ns_printk - debugging printk (for CONFIG_TASK_NS_DEBUG)
 task_ns_hist_alloc_task_ns - history tracing (for CONFIG_TASK_NS_HI...
 constants:
 TASK_NS_STATE_FOO - state bits
 TASK_NS_FLAG_FOO - task_ns flags (to select features)
 TASK_NS_CAP_FOO - task_ns-specific capabilities
 TASK_NS_CMD_get_version - task_ns subcommand names
 TASK_NS_VCI_VERSION

For the record, I like the term "process family" most. It implies the
possibility strict grouping, like last name, as well as allowing
heirarchies, but of course in our modern, post-nuclear family age, does
not imply a fixed nature of anything ;-).

Happy picking.

Sam.

Page 6 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

