Subject: Re: [PATCH] Simplify memory controller and resource counter 1/0O
Posted by Paul Menage on Fri, 05 Oct 2007 00:55:32 GMT

View Forum Message <> Reply to Message

Hi Balbir,

Any thoughts on this patch?
Cheers,

Paul

On 9/25/07, Paul Menage <menage@google.com> wrote:

> Simplify the memory controller and resource counter I/O routines

>

> This patch strips out some 1/O boilerplate from resource counters and
> the memory controller. It also adds locking to the resource counter

> reads and writes, and forbids writes to the root memory cgroup's limit
> file.

>

> One arguable drawback to this patch is that the use of memparse() is
> |ost in the cleanup. Having said that, given the existing of shell

> arithmetic, it's not clear to me that typing

z echo $[2<<30] > memory.limit

z is especially harder than

Z echo 2G > memory.limit

z Signed-off-by: Paul Menage <menage@google.com>
o

> include/linux/res_counter.h | 13 +----

> kernel/res_counter.c | 64 +++++--mommommmommoe oo

> mm/memcontrol.c | 103 ++++++++ttommcmmcmcm oo
> 3files changed, 43 insertions(+), 137 deletions(-)
>
>

Index: container-2.6.23-rc8-mmZl/include/linux/res_counter.h

> --- container-2.6.23-rc8-mm1.orig/include/linux/res_counter.h
> +++ container-2.6.23-rc8-mm1l/include/linux/res_counter.h

> @@ -46,17 +46,12 @@ struct res_counter {

> *

> * @counter: the counter in question

> * @member: the field to work with (see RES_xxx below)

> -* @buf: the buffer to opeate on,...

> - * @nbytes: its size...

Page 1 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=4055&goto=21314#msg_21314
https://new-forum.openvz.org/index.php?t=post&reply_to=21314
https://new-forum.openvz.org/index.php

>-*@pos: and the offset.
>+ * @val: the value passed by the user (for write)

> %

>

> -ssize_tres_counter_read(struct res_counter *counter, int member,
> - const char __user *buf, size_t nbytes, loff _t *pos,

> - int (*read_strategy)(unsigned long long val, char *s));

> -ssize_tres_counter_write(struct res_counter *counter, int member,
> - const char __user *buf, size_t nbytes, loff_t *pos,

> - int (*write_strategy)(char *buf, unsigned long long *val));

> +unsigned long long res_counter_read(struct res_counter *counter, int member);
> +int res_counter_write(struct res_counter *counter, int member,

>+ unsigned long long val);

>

> [*

> *the field descriptors. one for each member of res_counter

> Index: container-2.6.23-rc8-mml/kernel/res_counter.c

> --- container-2.6.23-rc8-mml.orig/kernel/res_counter.c

> +++ container-2.6.23-rc8-mm1l/kernel/res_counter.c

> @@ -75,58 +75,22 @@ res_counter_member(struct res_counter *c
> return NULL;

> }
>

> -ssize_tres_counter_read(struct res_counter *counter, int member,

> - const char __user *userbuf, size_t nbytes, loff_t *pos,

> - int (*read_strategy)(unsigned long long val, char *st_buf))

> +unsigned long long res_counter_read(struct res_counter *counter, int member)
> {

> - unsigned long long *val;

> - char buf[64], *s;

> -

> - S = buf;

> - val = res_counter_member(counter, member);

> - if (read_strategy)

> - s +=read_strategy(*val, s);

> - else

> - s += sprintf(s, "%llu\n", *val);

> - return simple_read_from_buffer((void __ user *)userbuf, nbytes,

> - pos, buf, s - buf);

>+ unsigned long long val;

>+ unsigned long flags;

>+ spin_lock_irgsave(&counter->lock, flags);

>+ val = *res_counter_member(counter, member);
>+ spin_unlock_irgrestore(&counter->lock, flags);
>+ return val;

>}

>

Page 2 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> -ssize_t res_counter_write(struct res_counter *counter, int member,

> - const char __user *userbuf, size_t nbytes, loff t *pos,

> - int (*write_strategy)(char *st_buf, unsigned long long *val))
> +int res_counter_write(struct res_counter *counter, int member,

> + unsigned long long val)

> {

> - int ret;

> - char *buf, *end;

> - unsigned long long tmp, *val;

> -

> - buf = kmalloc(nbytes + 1, GFP_KERNEL);
> - ret = -ENOMEM;

> - if (buf == NULL)
> - goto out;
> -

> - buf[nbytes] = "\0";
> - ret = -EFAULT;

> - if (copy_from_user(buf, userbuf, nbytes))
> - goto out_free;

> -

> - ret = -EINVAL,;

> -

> - if (write_strategy) {

> - if (write_strategy(buf, &tmp)) {

> - goto out_free;

> - }

> - } else {

> - tmp = simple_strtoull(buf, &end, 10);
> - if (*end !="0")

> - goto out_free;

>-}

> -

> - val = res_counter_member(counter, member);
> - *val = tmp;

> - ret = nbytes;

> -out_free:

> - kfree(buf);

> -out:

> - return ret;

>+ unsigned long flags;

>+ spin_lock_irgsave(&counter->lock, flags);

>+ *res_counter_member(counter, member) = val;
>+ spin_unlock_irgrestore(&counter->lock, flags);
>+ return O;

>}

> Index: container-2.6.23-rc8-mm1/mm/memcontrol.c

> --- container-2.6.23-rc8-mm1l.orig/mm/memcontrol.c

Page 3 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> +++ container-2.6.23-rc8-mml/mm/memcontrol.c

> @@ -437,112 +437,59 @@ void mem_cgroup_uncharge(struct page_cgr
> }

>}

>

> -int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)

>

> - *tmp = memparse(buf, &buf);

> - if (*buf 1="0"

> - return -EINVAL,;

> -

> - [*

> - * Round up the value to the closest page size
> - */

> - *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
> - return O;

>}
> -

> -static ssize_t mem_cgroup_read(struct cgroup *cont,

> - struct cftype *cft, struct file *file,

> - char __user *userbuf, size_t nbytes, loff t *ppos)

> +static unsigned long long mem_cgroup_read(struct cgroup *cont,

> + struct cftype *cft)

>{

> return res_counter_read(&mem_cgroup_from_cont(cont)->res,

> - cft->private, userbuf, nbytes, ppos,

> - NULL);

>+ cft->private);

>}

>

> -static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
> - struct file *file, const char __user *userbuf,

> - size_t nbytes, loff_t *ppos)

> +static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,

>+ unsigned long long val)

>

>+ /* Don't allow the limit to be set for the root cgroup */
>+ if (Icont->parent)

>+ return -EINVAL,

> return res_counter_write(&mem_cgroup_from_cont(cont)->res,
> - cft->private, userbuf, nbytes, ppos,

> - mem_cgroup_write_strategy);

>+ cft->private, PAGE_ALIGN(val));

>}

>

> -static ssize_t mem_control_type_write(struct cgroup *cont,

> - struct cftype *cft, struct file *file,

> - const char __user *userbuf,

Page 4 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> - size_t nbytes, loff t *pos)

>

> - int ret;

> - char *buf, *end;

> - unsigned long tmp;

> - struct mem_cgroup *mem,;

> -

> - mem = mem_cgroup_from_cont(cont);

> - buf = kmalloc(nbytes + 1, GFP_KERNEL);
> - ret = -ENOMEM;

> - if (buf == NULL)
> - goto out;
> -

> - buf[nbytes] = 0;
> - ret = -EFAULT,;

> - if (copy_from_user(buf, userbuf, nbytes))
> - goto out_free;
> -

> - ret = -EINVAL;
> - tmp = simple_strtoul(buf, &end, 10);
> - if (*end =0

> - goto out_free;

> -

> - if (tmp <= MEM_CGROUP_TYPE_UNSPEC || tmp >= MEM_CGROUP_TYPE_MAX)
> - goto out_free;

> -

> - mem->control_type = tmp;

> - ret = nbytes;

> -out_free:

> - kfree(buf);

> -out:

> - return ret;

> +static int mem_control_type_write(struct cgroup *cont, struct cftype *cft,
>+ u64 val)

> +{

>+ if (val <= MEM_CGROUP_TYPE_UNSPEC || val >= MEM_CGROUP_TYPE_MAX)
>+ return -EINVAL,

>+ mem_cgroup_from_cont(cont)->control_type = val;

>+ return O;

> }
>

> -static ssize_t mem_control_type_read(struct cgroup *cont,
> - struct cftype *cft,

> - struct file *file, char __user *userbuf,

> - size_t nbytes, loff_t *ppos)

> +static u64 mem_control_type_read(struct cgroup *cont,
>+ struct cftype *cft)

> {

Page 5 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> - unsigned long val;
> - char buf[64], *s;

> - struct mem_cgroup *mem;

> -

> - mem = mem_cgroup_from_cont(cont);

> - S = buf;

> - val = mem->control_type;

> - s += sprintf(s, "%lu\n", val);

> - return simple_read_from_buffer((void __user *)userbuf, nbytes,
> - ppos, buf, s - buf);

>+ return mem_cgroup_from_cont(cont)->control_type;

>}
>

> static struct cftype mem_cgroup_files[] ={
> {

> .name = "usage_in_bytes",

> .private = RES_USAGE,

> - .read = mem_cgroup_read,

>+ .read_uint = mem_cgroup_read,
> 1

> {

> .name = "limit_in_bytes",

> .private = RES_LIMIT,

> - .write = mem_cgroup_write,

> - .read = mem_cgroup_read,

>+ .write_uint = mem_cgroup_write,
>+ .read_uint = mem_cgroup_read,
> }

> {

> .name = "failcnt",

> .private = RES_FAILCNT,

> - .read = mem_cgroup_read,

>+ .read_uint = mem_cgroup_read,
> }

> {

> .name = "control_type",

> - .write = mem_control_type_write,
> - .read = mem_control_type_read,
>+ .write_uint = mem_control_type_write,
>+ .read_uint = mem_control_type read,
> }

>}

>

>

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

https://new-forum.openvz.org/index.php

