
Subject: Re: [PATCH 0/5] Kernel memory accounting container (v5)
Posted by Paul Menage on Mon, 01 Oct 2007 16:32:29 GMT
View Forum Message <> Reply to Message

Hi Pavel,

One question about the general design of this - have you tested an
approach where rather than tagging each object within the cache with
the cgroup that allocated it, you instead have (inside the cache code)
a separate cache structure for each cgroup? So the space overheads
would go from having a per-object overhead (one pointer per object?)
to having a "wastage" overhead (on average half a slab per cgroup).
And the time overhead would be the time required to lookup the
relevant cache for a cgroup at the start of the allocation operation,
and the relevant cache for an object (from its struct page) at
deallocation, rather then the time required to update the per-object
housekeeping pointer.

Each cache would need to be assigned a unique ID, used as an index
into a per-cgroup lookup table of localized caches. (This could almost
be regarded as a form of kmem_cache namespace).

It seems to me that this alternative approach would be a lower memory
overhead for people who have the kernel memory controller compiled in
but aren't using it, or are only using a few groups.

Paul

On 9/25/07, Pavel Emelyanov <xemul@openvz.org> wrote:
> Changes since v.4:
> * make SLAB_NOTIFY caches mark pages as SlabDebug. That
> makes the interesting paths simpler (thanks to Christoph);
> * the change above caused appropriate changes in "turn
> notifications on" path - all available pages must become
> SlabDebug and page's freelists must be flushed;
> * added two more events - "on" and "off" to make kmalloc
> caches disabling more gracefully;
> * turning notifications "off" is marked as "TODO". Right
> now it's hard w/o massive rework of slub.c in respect to
> full slabs handling.
>
> Changes since v.3:
> * moved alloc/free notification into slow path and make
> "notify-able" caches walk this path always;
> * introduced some optimization for the case, when there's
> only one listener for SLUB events (saves more that 10%
> of performance);
> * ported on 2.6.23-rc6-mm1 tree.

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=4045&goto=21087#msg_21087
https://new-forum.openvz.org/index.php?t=post&reply_to=21087
https://new-forum.openvz.org/index.php

>
> Changes since v.2:
> * introduced generic notifiers for slub. right now there
> are only events, needed by accounting, but this set can
> be extended in the future;
> * moved the controller core into separate file, so that
> its extension and/or porting on slAb will look more
> logical;
> * fixed this message :).
>
> Changes since v.1:
> * fixed Paul's comment about subsystem registration;
> * return ERR_PTR from ->create callback, not NULL;
> * make container-to-object assignment in rcu-safe section;
> * make turning accounting on and off with "1" and "0".
>
> ==
>
> Long time ago we decided to start memory control with the
> user memory container. Now this container in -mm tree and
> I think we can start with the kmem one.
>
> First of all - why do we need this kind of control. The major
> "pros" is that kernel memory control protects the system
> from DoS attacks by processes that live in container. As our
> experience shows many exploits simply do not work in the
> container with limited kernel memory.
>
> I can split the kernel memory container into 4 parts:
>
> 1. kmalloc-ed objects control
> 2. vmalloc-ed objects control
> 3. buddy allocated pages control
> 4. kmem_cache_alloc-ed objects control
>
> the control of first tree types of objects has one peculiarity:
> one need to explicitly point out which allocations he wants to
> account and this becomes not-configurable and is to be discussed.
>
> On the other hands such objects as anon_vma-s, file-s, sighangds,
> vfsmounts, etc are created by user request always and should
> always be accounted. Fortunately they are allocated from their
> own caches and thus the whole kmem cache can be accountable.
>
> This is exactly what this patchset does - it adds the ability
> to account for the total size of kmem-cache-allocated objects
> from specified kmem caches.
>

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> This is based on the SLUB allocator, Paul's control groups and the
> resource counters I made for RSS controller and which are in
> -mm tree already.
>
> To play with it, one need to mount the container file system
> with -o kmem and then mark some caches as accountable via
> /sys/slab/<cache_name>/cache_notify.
>
> As I have already told kmalloc caches cannot be accounted easily
> so turning the accounting on for them will fail with -EINVAL.
>
> Turning the accounting off is possible only if the cache has
> no objects. This is done so because turning accounting off
> implies marking of all the slabs in the cache as not-debug, but
> due to full-pages in slub are not stored in any lists (usually)
> this is impossible to do so, however this is in todo list.
>
> Thanks,
> Pavel
>

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

