
Subject: Re: [PATCH 1/3] Signal semantics for /sbin/init
Posted by Sukadev Bhattiprolu on Thu, 27 Sep 2007 03:04:53 GMT
View Forum Message <> Reply to Message

Oleg,

Any thoughts on how to proceed with this patchset ? While not complete
with respect to blocked signals and container init, would this patchset
make semantics slightly better than they are today (container-init can
be terminated from within the container) ?

Suka

sukadev@us.ibm.com [sukadev@us.ibm.com] wrote:
| Oleg Nesterov [oleg@tv-sign.ru] wrote:
| | On 09/13, sukadev@us.ibm.com wrote:
| | >
| | > Oleg Nesterov [oleg@tv-sign.ru] wrote:
| | > | > >
| | > | > >> Notes:
| | > | > >>
| | > | > >> 	- Blocked signals are never ignored, so init still can receive
| | > | > >> 	 a pending blocked signal after sigprocmask(SIG_UNBLOCK).
| | > | > >> 	 Easy to fix, but probably we can ignore this issue.
| | > | > >
| | > | > > I was wrong. This should be fixed right now. I _think_ this is easy,
| | > | > > and I was going to finish this patch yesterday, but - sorry! - I just
| | > | > > can't switch to "kernel mode" these days, I am fighting with some urgent
| | > | > > tasks on my paid job.
| | > | > >
| | > | > To respect the current init semantic,
| | > |
| | > | The current init semantic is broken in many ways ;)
| | > |
| | > | > shouldn't we discard any unblockable
| | > | > signal (STOP and KILL) sent by a process to its pid namespace init process ?
| | >
| | > Yes. And Patch 1/3 (Oleg's patch) in the set I sent, handles this already
| | > (since STOP and KILL are never in the task->blocked list)
| | >
| | >
| | > | > Then, all other signals should be handled appropriately by the pid namespace
| | > | > init.
| | >
| | > |
| | > | Yes, I think you are probably right, this should be enough in practice. After all,
| | > | only root can send the signal to /sbin/init.
| | >

Page 1 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=620
https://new-forum.openvz.org/index.php?t=rview&th=3873&goto=20858#msg_20858
https://new-forum.openvz.org/index.php?t=post&reply_to=20858
https://new-forum.openvz.org/index.php

| | > I agree - the assumption that the container-init will handle these
| | > other signals, simplifies the kernel implementation for now.
| | >
| | >
| | > | On my machine, /proc/1/status shows that init doesn't have a handler for
| | > | non-ignored SIGUNUSED == 31, though.
| | > |
| | > | But who knows? The kernel promises some guarantees, it is not good to break them.
| | > | Perhaps some strange non-standard environment may suffer.
| | > |
| | > | > We are assuming that the pid namespace init is not doing anything silly and
| | > | > I guess it's OK if the consequences are only on the its pid namespace and
| | > | > not the whole system.
| | > |
| | > | The sub-namespace case is very easy afaics, we only need the "signal comes from
| | > | the parent namespace" check, not a problem if we make the decision on the sender's
| | > | path, like this patch does.
| | >
| | > Yes, patches 2 and 3 of the set already do the ancestor-ns check. no ?
| |
| | Yes, I think patches 2-3 are good. But this patch is not. I thought that we
| | can ignore the "Blocked signals are never ignored" problem, now I am not sure.
| | It is possible that init temporary blocks a signal which it is not going to
| | handle.
| |
| | Perhaps we can do something like the patch below, but I don't like it. With
| | this patch, we check the signal handler even if /sbin/init blocks the signal.
| | This makes the semantics a bit strange for /sbin/init. Hopefully not a problem
| | in practice, but still not good.
|
| I think this is one step ahead of what we were discussing last week.
| A container-init that does not have a handler for a fatal signal would
| survive even if the signal is posted when it is blocked.
|
| |
| | Unfortunately, I don't know how to make it better. The problem with blocked
| | signals is that we don't know who is the sender of the signal at the time
| | when the signal is unblocked.
|
| One solution I was thinking of was to possibly queue pending blocked
| signals to a container init seperately and then requeue them on the
| normal queue when signals are unblocked. Its definitely not an easier
| solution, but might be less intrusive than the "signal from parent ns
| flag" solution.
|
| i.e suppose we have:
|
| 	struct pid_namespace {

Page 2 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

| 		...
| 		struct sigpending cinit_blocked_pending;
| 		struct sigpending cinit_blocked_shared_pending;
| 	}
|
| Signals from ancestor ns are queued as usual on task->pending and
| task->signal->shared_pending. They don't need any special handling.
|
| Only signals posted to a container-init from within its namespace
| need special handling (as in: ignore unhandled fatal signals from
| same namespace).
|
| If the container-init has say SIGUSR1 blocked, and a descendant of
| container-init posts SIGUSR1 to container-init, queue the SIGUSR1
| in pid_namespace->cinit_blocked_pending.
|
| When container-init unblocks SIGUSR1, check if there was a pending
| SIGUSR1 from same namespace (i.e check ->cinit_blocked_pending list).
| If there was and container-init has a handler for SIGUSR1, post SIGUSR1
| on task->pending queue and let the container-init handle SIGUSR1.
|
| If there was a SIGUSR1 posted to containier init and there is no handler
| for SIGUSR1, then just ignore the SIGUSR1 (since it would be fatal
| otherwise).
|
| I chose 'struct pid_namespace' for the temporary queue, since we need
| the temporary queues only for container-inits (not for all processes).
| And having it allocated ahead of time, ensures we can queue the signal
| even under low-memory conditions.
|
| Just an idea at this point.
|
| |
| | What do you think? Can we live with this oddity? Otherwise, we have to add
| | something like the "the signal is from the parent namespace" flag, and I bet
| | this is not trivial to implement correctly.
|
| I think its reasonable to place some restrictions on container-init
| processes, so, yes, I think the oddity is fine for now (i.e at least
| until someone needs a different behavior).
|
| BTW, I ran some tests on this patch and they seem to work as expected :-)
| Will run some more tests today.
|
| |
| | Oleg.
| |
| | --- t/kernel/signal.c~IINITSIGS	2007-08-28 19:15:28.000000000 +0400

Page 3 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

| | +++ t/kernel/signal.c	2007-09-17 19:20:24.000000000 +0400
| | @@ -39,11 +39,35 @@
| |
| | static struct kmem_cache *sigqueue_cachep;
| |
| | +static int sig_init_ignore(struct task_struct *tsk)
| | +{
| | +	// Currently this check is a bit racy with exec(),
| | +	// we can _simplify_ de_thread and close the race.
| | +	if (likely(!is_init(tsk->group_leader)))
| | +		return 0;
| |
| | -static int sig_ignored(struct task_struct *t, int sig)
| | +	// ---------------- Multiple pid namespaces ----------------
| | +	// if (current is from tsk's parent pid_ns && !in_interrupt())
| | +	//	return 0;
| | +
| | +	return 1;
| | +}
| | +
| | +static int sig_task_ignore(struct task_struct *tsk, int sig)
| | {
| | -	void __user * handler;
| | +	void __user * handler = tsk->sighand->action[sig-1].sa.sa_handler;
| | +
| | +	if (handler == SIG_IGN)
| | +		return 1;
| | +
| | +	if (handler != SIG_DFL)
| | +		return 0;
| |
| | +	return sig_kernel_ignore(sig) || sig_init_ignore(tsk);
| | +}
| | +
| | +static int sig_ignored(struct task_struct *t, int sig)
| | +{
| | 	/*
| | 	 * Tracers always want to know about signals..
| | 	 */
| | @@ -55,13 +79,10 @@ static int sig_ignored(struct task_struc
| | 	 * signal handler may change by the time it is
| | 	 * unblocked.
| | 	 */
| | -	if (sigismember(&t->blocked, sig))
| | +	if (sigismember(&t->blocked, sig) && !sig_init_ignore(t))
| | 		return 0;
| |
| | -	/* Is it explicitly or implicitly ignored? */

Page 4 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

| | -	handler = t->sighand->action[sig-1].sa.sa_handler;
| | -	return handler == SIG_IGN ||
| | -		(handler == SIG_DFL && sig_kernel_ignore(sig));
| | +	return sig_task_ignore(t, sig);
| | }
| |
| | /*
| | @@ -554,6 +575,9 @@ static void handle_stop_signal(int sig,
| | 		 */
| | 		return;
| |
| | +	if (sig_init_ignore(p))
| | +		return;
| | +
| | 	if (sig_kernel_stop(sig)) {
| | 		/*
| | 		 * This is a stop signal. Remove SIGCONT from all queues.
| | @@ -1822,14 +1846,6 @@ relock:
| | 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
| | 			continue;
| |
| | -		/*
| | -		 * Init of a pid space gets no signals it doesn't want from
| | -		 * within that pid space. It can of course get signals from
| | -		 * its parent pid space.
| | -		 */
| | -		if (current == child_reaper(current))
| | -			continue;
| | -
| | 		if (sig_kernel_stop(signr)) {
| | 			if (current->signal->flags & SIGNAL_GROUP_EXIT)
| | 				continue;
| | @@ -2308,8 +2324,7 @@ int do_sigaction(int sig, struct k_sigac
| | 		 * (for example, SIGCHLD), shall cause the pending signal to
| | 		 * be discarded, whether or not it is blocked"
| | 		 */
| | -		if (act->sa.sa_handler == SIG_IGN ||
| | -		 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
| | +		if (sig_task_ignore(current, sig)) {
| | 			struct task_struct *t = current;
| | 			sigemptyset(&mask);
| | 			sigaddset(&mask, sig);
| ___
| Containers mailing list
| Containers@lists.linux-foundation.org
| https://lists.linux-foundation.org/mailman/listinfo/containers

Containers mailing list

Page 5 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 6 of 6 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

