
Subject: Re: [PATCH 1/3] Signal semantics for /sbin/init
Posted by Oleg Nesterov on Mon, 17 Sep 2007 15:21:14 GMT
View Forum Message <> Reply to Message

On 09/13, sukadev@us.ibm.com wrote:
>
> Oleg Nesterov [oleg@tv-sign.ru] wrote:
> | > > 
> | > >> Notes:
> | > >>
> | > >> 	- Blocked signals are never ignored, so init still can receive
> | > >> 	  a pending blocked signal after sigprocmask(SIG_UNBLOCK).
> | > >> 	  Easy to fix, but probably we can ignore this issue.
> | > > 
> | > > I was wrong. This should be fixed right now. I _think_ this is easy,
> | > > and I was going to finish this patch yesterday, but - sorry! - I just
> | > > can't switch to "kernel mode" these days, I am fighting with some urgent
> | > > tasks on my paid job.
> | > > 
> | > To respect the current init semantic,
> | 
> | The current init semantic is broken in many ways ;)
> | 
> | > shouldn't we discard any unblockable 
> | > signal (STOP and KILL) sent by a process to its pid namespace init process ? 
> 
> Yes. And Patch 1/3 (Oleg's patch) in the set I sent, handles this already
> (since STOP and KILL are never in the task->blocked list)
> 
> 
> | > Then, all other signals should be handled appropriately by the pid namespace 
> | > init. 
> 
> | 
> | Yes, I think you are probably right, this should be enough in practice. After all,
> | only root can send the signal to /sbin/init.
> 
> I agree - the assumption that the container-init will handle these
> other signals, simplifies the kernel implementation for now.
> 
> 
> | On my machine, /proc/1/status shows that init doesn't have a handler for
> | non-ignored SIGUNUSED == 31, though.
> | 
> | But who knows? The kernel promises some guarantees, it is not good to break them.
> | Perhaps some strange non-standard environment may suffer.
> | 
> | > We are assuming that the pid namespace init is not doing anything silly and 

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=691
https://new-forum.openvz.org/index.php?t=rview&th=3873&goto=20385#msg_20385
https://new-forum.openvz.org/index.php?t=post&reply_to=20385
https://new-forum.openvz.org/index.php


> | > I guess it's OK if the consequences are only on the its pid namespace and 
> | > not the whole system.
> | 
> | The sub-namespace case is very easy afaics, we only need the "signal comes from
> | the parent namespace" check, not a problem if we make the decision on the sender's
> | path, like this patch does.
> 
> Yes, patches 2 and 3 of the set already do the ancestor-ns check. no ?

Yes, I think patches 2-3 are good. But this patch is not. I thought that we
can ignore the "Blocked signals are never ignored" problem, now I am not sure.
It is possible that init temporary blocks a signal which it is not going to
handle.

Perhaps we can do something like the patch below, but I don't like it. With
this patch, we check the signal handler even if /sbin/init blocks the signal.
This makes the semantics a bit strange for /sbin/init. Hopefully not a problem
in practice, but still not good.

Unfortunately, I don't know how to make it better. The problem with blocked
signals is that we don't know who is the sender of the signal at the time
when the signal is unblocked.

What do you think? Can we live with this oddity? Otherwise, we have to add
something like the "the signal is from the parent namespace" flag, and I bet
this is not trivial to implement correctly.

Oleg.

--- t/kernel/signal.c~IINITSIGS	2007-08-28 19:15:28.000000000 +0400
+++ t/kernel/signal.c	2007-09-17 19:20:24.000000000 +0400
@@ -39,11 +39,35 @@
 
 static struct kmem_cache *sigqueue_cachep;
 
+static int sig_init_ignore(struct task_struct *tsk)
+{
+	// Currently this check is a bit racy with exec(),
+	// we can _simplify_ de_thread and close the race.
+	if (likely(!is_init(tsk->group_leader)))
+		return 0;
 
-static int sig_ignored(struct task_struct *t, int sig)
+	// ---------------- Multiple pid namespaces ----------------
+	// if (current is from tsk's parent pid_ns && !in_interrupt())
+	//	return 0;
+
+	return 1;

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


+}
+
+static int sig_task_ignore(struct task_struct *tsk, int sig)
 {
-	void __user * handler;
+	void __user * handler = tsk->sighand->action[sig-1].sa.sa_handler;
+
+	if (handler == SIG_IGN)
+		return 1;
+
+	if (handler != SIG_DFL)
+		return 0;
 
+	return sig_kernel_ignore(sig) || sig_init_ignore(tsk);
+}
+
+static int sig_ignored(struct task_struct *t, int sig)
+{
 	/*
 	 * Tracers always want to know about signals..
 	 */
@@ -55,13 +79,10 @@ static int sig_ignored(struct task_struc
 	 * signal handler may change by the time it is
 	 * unblocked.
 	 */
-	if (sigismember(&t->blocked, sig))
+	if (sigismember(&t->blocked, sig) && !sig_init_ignore(t))
 		return 0;
 
-	/* Is it explicitly or implicitly ignored? */
-	handler = t->sighand->action[sig-1].sa.sa_handler;
-	return   handler == SIG_IGN ||
-		(handler == SIG_DFL && sig_kernel_ignore(sig));
+	return sig_task_ignore(t, sig);
 }
 
 /*
@@ -554,6 +575,9 @@ static void handle_stop_signal(int sig, 
 		 */
 		return;
 
+	if (sig_init_ignore(p))
+		return;
+
 	if (sig_kernel_stop(sig)) {
 		/*
 		 * This is a stop signal.  Remove SIGCONT from all queues.
@@ -1822,14 +1846,6 @@ relock:

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


 		if (sig_kernel_ignore(signr)) /* Default is nothing. */
 			continue;
 
-		/*
-		 * Init of a pid space gets no signals it doesn't want from
-		 * within that pid space. It can of course get signals from
-		 * its parent pid space.
-		 */
-		if (current == child_reaper(current))
-			continue;
-
 		if (sig_kernel_stop(signr)) {
 			if (current->signal->flags & SIGNAL_GROUP_EXIT)
 				continue;
@@ -2308,8 +2324,7 @@ int do_sigaction(int sig, struct k_sigac
 		 *   (for example, SIGCHLD), shall cause the pending signal to
 		 *   be discarded, whether or not it is blocked"
 		 */
-		if (act->sa.sa_handler == SIG_IGN ||
-		   (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
+		if (sig_task_ignore(current, sig)) {
 			struct task_struct *t = current;
 			sigemptyset(&mask);
 			sigaddset(&mask, sig);

_______________________________________________
Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 4 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

