
Subject: Re: [PATCH] Memory shortage can result in inconsistent flocks state
Posted by bfields on Thu, 13 Sep 2007 19:34:39 GMT
View Forum Message <> Reply to Message

On Thu, Sep 13, 2007 at 03:27:08PM -0400, Chuck Ebbert wrote:
> On 09/11/2007 08:38 AM, Pavel Emelyanov wrote:
> > diff --git a/fs/locks.c b/fs/locks.c
> > index 0db1a14..f59d066 100644
> > --- a/fs/locks.c
> > +++ b/fs/locks.c
> > @@ -732,6 +732,14 @@ static int flock_lock_file(struct file *
> > 	lock_kernel();
> > 	if (request->fl_flags & FL_ACCESS)
> > 		goto find_conflict;
> > +
> > +	if (request->fl_type != F_UNLCK) {
> > +		error = -ENOMEM;
> > +		new_fl = locks_alloc_lock();
> > +		if (new_fl == NULL)
> > +			goto out;
> > +	}
> > +
> > 	for_each_lock(inode, before) {
> > 		struct file_lock *fl = *before;
> > 		if (IS_POSIX(fl))
> > @@ -753,10 +761,6 @@ static int flock_lock_file(struct file *
> > 		goto out;
> > 	}
> >
> > -	error = -ENOMEM;
> > -	new_fl = locks_alloc_lock();
> > -	if (new_fl == NULL)
> > -		goto out;
> > 	/*
> > 	 * If a higher-priority process was blocked on the old file lock,
> > 	 * give it the opportunity to lock the file.
>
> Doesn't that create a leak in some cases?
>
> > for_each_lock(inode, before) {
> > struct file_lock *fl = *before;
> > if (IS_POSIX(fl))
> > break;
> > if (IS_LEASE(fl))
> > continue;
> > if (filp != fl->fl_file)
> > continue;
> > if (request->fl_type == fl->fl_type)

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1863
https://new-forum.openvz.org/index.php?t=rview&th=3878&goto=20264#msg_20264
https://new-forum.openvz.org/index.php?t=post&reply_to=20264
https://new-forum.openvz.org/index.php

> > goto out; <<<<<<<<<<<<<<<< LEAK?

You mean, a leak of the memory allocated for new_fl? That's freed at
the exit labeled with "out". It's the only exit:

	out:
	 unlock_kernel();
		if (new_fl)
			locks_free_lock(new_fl);
		return error;

And new_fl is initially NULL, assigned only once by the allocation, then
assigned to NULL only at the very end when we know we've succeeded.

Am I missing something else?

--b.

> > found = 1;
> > locks_delete_lock(before);
> > break;
> > }

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

