
Subject: Re: [PATCH] Memory shortage can result in inconsistent flocks state
Posted by Chuck Ebbert on Thu, 13 Sep 2007 19:27:08 GMT
View Forum Message <> Reply to Message

On 09/11/2007 08:38 AM, Pavel Emelyanov wrote:
> When the flock_lock_file() is called to change the flock
> from F_RDLCK to F_WRLCK or vice versa the existing flock
> can be removed without appropriate warning.
>
> Look:
> for_each_lock(inode, before) {
> struct file_lock *fl = *before;
> if (IS_POSIX(fl))
> break;
> if (IS_LEASE(fl))
> continue;
> if (filp != fl->fl_file)
> continue;
> if (request->fl_type == fl->fl_type)
> goto out;
> found = 1;
> locks_delete_lock(before); <<<<<< !
> break;
> }
>
> if after this point the subsequent locks_alloc_lock() will
> fail the return code will be -ENOMEM, but the existing lock
> is already removed.
>
> This is a known feature that such "re-locking" is not atomic,
> but in the racy case the file should stay locked (although by
> some other process), but in this case the file will be unlocked.
>
> The proposal is to prepare the lock in advance keeping no chance
> to fail in the future code.
>
> Found during making the flocks pid-namespaces aware.
>
> Signed-off-by: Pavel Emelyanov <xemul@openvz.org>
>
> ---
>
> diff --git a/fs/locks.c b/fs/locks.c
> index 0db1a14..f59d066 100644
> --- a/fs/locks.c
> +++ b/fs/locks.c
> @@ -732,6 +732,14 @@ static int flock_lock_file(struct file *
> 	lock_kernel();

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1642
https://new-forum.openvz.org/index.php?t=rview&th=3878&goto=20241#msg_20241
https://new-forum.openvz.org/index.php?t=post&reply_to=20241
https://new-forum.openvz.org/index.php

> 	if (request->fl_flags & FL_ACCESS)
> 		goto find_conflict;
> +
> +	if (request->fl_type != F_UNLCK) {
> +		error = -ENOMEM;
> +		new_fl = locks_alloc_lock();
> +		if (new_fl == NULL)
> +			goto out;
> +	}
> +
> 	for_each_lock(inode, before) {
> 		struct file_lock *fl = *before;
> 		if (IS_POSIX(fl))
> @@ -753,10 +761,6 @@ static int flock_lock_file(struct file *
> 		goto out;
> 	}
>
> -	error = -ENOMEM;
> -	new_fl = locks_alloc_lock();
> -	if (new_fl == NULL)
> -		goto out;
> 	/*
> 	 * If a higher-priority process was blocked on the old file lock,
> 	 * give it the opportunity to lock the file.

Doesn't that create a leak in some cases?

> for_each_lock(inode, before) {
> struct file_lock *fl = *before;
> if (IS_POSIX(fl))
> break;
> if (IS_LEASE(fl))
> continue;
> if (filp != fl->fl_file)
> continue;
> if (request->fl_type == fl->fl_type)
> goto out; <<<<<<<<<<<<<<<< LEAK?
> found = 1;
> locks_delete_lock(before);
> break;
> }

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

