
Subject: Re: [RFC][patch 3/3] activate filtering for the bind
Posted by serue on Mon, 10 Sep 2007 15:46:30 GMT
View Forum Message <> Reply to Message

Quoting Daniel Lezcano (dlezcano@fr.ibm.com):
> Serge E. Hallyn wrote:
>> Quoting Daniel Lezcano (dlezcano@meiosys.com):
>>> Serge E. Hallyn wrote:
>>>> Quoting dlezcano@fr.ibm.com (dlezcano@fr.ibm.com):
>>>>> From: Daniel Lezcano <dlezcano@fr.ibm.com>
>>>>>
>>>>> For the moment, I only made this patch for the RFC. It shows how simple
>>>>> it is
>>>>> to hook different socket syscalls. This patch denies bind to any
>>>>> addresses
>>>>> which are not in the container IPV4 address list, except for the
>>>>> INADDR_ANY.
>>>>>
>>>>> Signed-off-by: Daniel Lezcano <dlezcano@fr.ibm.com>
>>>>>
>>>>> ---
>>>>> kernel/container_network.c | 66
>>>>> +++++++++++++++++++++++----------------------
>>>>> 1 file changed, 35 insertions(+), 31 deletions(-)
>>>>>
>>>>> Index: 2.6-mm/kernel/container_network.c
>>>>> ===
>>>>> --- 2.6-mm.orig/kernel/container_network.c
>>>>> +++ 2.6-mm/kernel/container_network.c
>>>>> @@ -12,6 +12,9 @@
>>>>> #include <linux/list.h>
>>>>> #include <linux/spinlock.h>
>>>>> #include <linux/security.h>
>>>>> +#include <linux/in.h>
>>>>> +#include <linux/net.h>
>>>>> +#include <linux/socket.h>
>>>>>
>>>>> struct network {
>>>>> 	struct container_subsys_state css;
>>>>> @@ -53,24 +56,14 @@
>>>>>
>>>>> static int network_socket_create(int family, int type, int protocol,
>>>>> int kern)
>>>>> {
>>>>> -	struct network *network;
>>>>> -
>>>>> -	network = task_network(current);
>>>>> -	if (!network || network == &top_network)

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=3854&goto=19999#msg_19999
https://new-forum.openvz.org/index.php?t=post&reply_to=19999
https://new-forum.openvz.org/index.php

>>>>> -		return 0;
>>>>> -
>>>>> +	/* nothing to do right now */
>>>>> 	return 0;
>>>>> }
>>>>>
>>>>> static int network_socket_post_create(struct socket *sock, int family,
>>>>> 				 int type, int protocol, int kern)
>>>>> {
>>>>> -	struct network *network;
>>>>> -
>>>>> -	network = task_network(current);
>>>>> -	if (!network || network == &top_network)
>>>>> -		return 0;
>>>>> -
>>>>> +	/* nothing to do right now */
>>>>> 	return 0;
>>>>> }
>>>>>
>>>>> @@ -79,47 +72,58 @@
>>>> Please so send -p diffs. I'll assume this is network_socket_bind()
>>>> given your patch description :)
>>>>> 			 int addrlen)
>>>>> {
>>>>> 	struct network *network;
>>>>> +	struct list_head *l;
>>>>> +	rwlock_t *lock;
>>>>> +	struct ipv4_list *entry;
>>>>> +	__be32 addr;
>>>>> +	int ret = -EPERM;
>>>>>
>>>>> +	/* Do nothing for the root container */
>>>>> 	network = task_network(current);
>>>>> 	if (!network || network == &top_network)
>>>>> 		return 0;
>>>>>
>>>>> -	return 0;
>>>>> +	/* Check we have to do some filtering */
>>>>> +	if (sock->ops->family != AF_INET)
>>>>> +		return 0;
>>>>> +
>>>>> +	l = &network->ipv4_list;
>>>>> +	lock = &network->ipv4_list_lock;
>>>>> +	addr = ((struct sockaddr_in *)address)->sin_addr.s_addr;
>>>>> +
>>>>> +	if (addr == INADDR_ANY)
>>>> In bsdjail, if addr == INADDR_ANY, I set addr = jailaddr. Do you think
>>>> you want to do that?

Page 2 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

>>> Good question. This is one think I would like to define. If we do that we
>>> can not connect via 127.0.0.1. and|or a container can have more than one
>>> IP address, no ?
>> Yes.
>>> IMHO, we should have the loopback address available for all containers
>>> and that means 127.0.0.1 is an IP address which is not isolated.
>> For real network namespaces yes. For this version, I would have thought
>> the goal would be to provide a minimal, useful, but very fast
>> container-paddress binding.
>> I guess I'll have to see the rest of your implementation, but I have the
>> feeling that to not have this limitation you'll affect performance a
>> bit. And since we are also working on full network namespaces,
>> providing maximal functionality with worse performance would be a poor
>> tradeoff here.
>> But let's see the rest of your implementation.
>> Did you mention somewhere that Eric still prefers using netfilter rather
>> than LSM?
>
> Paul told me about a ip isolation based on the netfilter and a specific
> iptable module:
>
> --
> "
> On 9/6/07, Daniel Lezcano <dlezcano@fr.ibm.com> wrote:
> > >
> > > I am really not opposed to iptables, I was thinking that if we want to
> > > have bind filtering, security provides the framework for that and
> adding
> > > new hooks for the iptable will just add a hook duplication because they
> > > are the same.
> > >
> > > So the result is:
> > >
> > > 1 - create a container => network.ipv4 (allowed addresses)
> > > 2 - echo add 192.168.20.10 > network.ipv4
> > >
> > > The application running inside the container can not use another
> address
> > > than the one assigned to it.
> > >
> > > This features is needed for some IP jailing like linux-vserver or for
> > > security. The association container + IP isolation is really a good
> feature.
> > >
> >> > > For instance, I personally am much more interested in being able to
> >> > > control ports rather than IP addresses (although that could be
> >> > > interesting too).
> > >

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > > What do want to do ? Can you describe the features you want ?
> > > Is it a bind filtering for port ? If this is the case, then I can add
> > > two new files:
> > > network.tcp.ports
> > > network.udp.ports
> > > and extend the hooks to check the port too.
> > >
>
> I think that (at least today :-)) my ideal interface would be a list
> of tuples of the form:
>
> local port range/remote ip address/remote ip mask/remote port range
>
> because I don't really care about multiple local addresses, but I do
> care about binding to local ports and connecting to remote addresses
> and ports.
>
> But other people (e.g. Eric) have completely different requirements.
> Creating an API and mechanism that satisfies everyone is going to
> result in you reimplementing a significant chunk of the iptables
> functionality.
>
> > >
> >> > > And someone else might have completely different
> >> > > needs (e.g. people mentioned IPv6). Rather than you having to
> >> > > implement all of these things, just giving a tag that can be tied to
> >> > > iptables means that people can define these rules themselves in
> >> > > userspace.
> > >
> > > I understand. But I don't see how we can handle bind filtering (ip |
> port).
> > >
>
> 1) Completely separately from containers, we create a new iptable
> called something like "socket", with predefined chains BIND, ACCEPT
> and CONNECT. When ever someone tries to do a bind(), accept() or
> connect() we create a fake packet with the appropriate local and
> remote addresses and ports, and feed it through the appropriate chain.
> If it gets though OK we allow the operation to proceed, else we fail
> with EPERM.
>
> 2) We create a new container (control group) subsystem, e.g. called
> "network_id" that does two things:
>
> - creates a simple state object with a single uniquely-generated
> integer network_id for each control group
>
> - provides a new iptable match module ("control_group"?) that matches

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> if the current task's network_id is within a given range.
>
> Then the user can create pretty much arbitrary rules with the existing
> iptables tools and primitives. No complex new user APIs needed.
>
> Paul"
> --
>
>> So what... if a packet comes in with a certain destination
>> address you can tag it with a container, and once a connection starts
>> you can use connection tracking to continue tagging it with that
>> container. You tag an outgoing packet with the container as soon as
>> it's dumped in the socket, and rules enforce that the source address be
>> valid for that container. Are you saying the netfilter hooks are in
>> the wrong places for that?
>
> No, for that netfilters hooks are in the right place.

Ok, then that approach definately has its upsides.

The only downside I see right now is what to do about a sendto() on a
udp socket that hasn't been bound.

-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

