
Subject: Re: [PATCH 03/16] net: Basic network namespace infrastructure.
Posted by paulmck on Sun, 09 Sep 2007 16:45:47 GMT
View Forum Message <> Reply to Message

On Sun, Sep 09, 2007 at 04:04:45AM -0600, Eric W. Biederman wrote:
> "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> writes:
>
> > On Sat, Sep 08, 2007 at 03:15:34PM -0600, Eric W. Biederman wrote:
> >>
> >> This is the basic infrastructure needed to support network
> >> namespaces. This infrastructure is:
> >> - Registration functions to support initializing per network
> >> namespace data when a network namespaces is created or destroyed.
> >>
> >> - struct net. The network namespace data structure.
> >> This structure will grow as variables are made per network
> >> namespace but this is the minimal starting point.
> >>
> >> - Functions to grab a reference to the network namespace.
> >> I provide both get/put functions that keep a network namespace
> >> from being freed. And hold/release functions serve as weak references
> >> and will warn if their count is not zero when the data structure
> >> is freed. Useful for dealing with more complicated data structures
> >> like the ipv4 route cache.
> >>
> >> - A list of all of the network namespaces so we can iterate over them.
> >>
> >> - A slab for the network namespace data structure allowing leaks
> >> to be spotted.
> >
> > If I understand this correctly, the only way to get to a namespace is
> > via get_net_ns_by_pid(), which contains the rcu_read_lock() that matches
> > the rcu_barrier() below.
>
> Not quite. That is the convoluted case for getting a namespace someone
> else is using. current->nsproxy->net_ns works and should require no
> locking to read (only the current process may modify it) and does hold
> a reference to the network namespace. Similarly for sock->sk_net.

Ah! Got it, thank you for the explanation.

> > So, is the get_net() in sock_copy() in this patch adding a reference to
> > an element that is guaranteed to already have at least one reference?
>
> Yes.
>
> > If not, how are we preventing sock_copy() from running concurrently with
> > cleanup_net()? Ah, I see -- in sock_copy() we are getting a reference

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=713
https://new-forum.openvz.org/index.php?t=rview&th=3866&goto=19987#msg_19987
https://new-forum.openvz.org/index.php?t=post&reply_to=19987
https://new-forum.openvz.org/index.php

> > to the new struct sock that no one else can get a reference to, so OK.
> > Ditto for the get_net() in sk_alloc().
>
> > But I still don't understand what is protecting the get_net() in
> > dev_seq_open(). Is there an existing reference?
>
> Sort of. The directories under /proc/net are created when create
> a network namespace and they are destroyed when the network namespace
> is removed. And those directories remember which network namespace
> they are for and that is what dev_seq_open is referencing.
>
> So the tricky case what happens if we open a directory under /proc/net
> as we are cleaning up a network namespace.

Yep! ;-)

> > If so, how do we know
> > that it won't be removed just as we are trying to add our reference
> > (while at the same time cleanup_net() is running)? Ditto for the other
> > _open() operations in the same patch. And for netlink_seq_open().
> >
> > Enlightenment?
>
> Good spotting. It looks like you have found a legitimate race. Grr.
> I thought I had a reference to the network namespace there. I need to
> step back and think about this a bit, and see if I can come up with a
> legitimate idiom.
>
> I know the network namespace exists and I have not finished
> cleanup_net because I can still get to the /proc entries.

OK. Hmmm... I need to go review locking for /proc...

> I know I cannot use get_net for the reference in in /proc because
> otherwise I could not release the network namespace unless I was to
> unmount the filesystem, which is not a desirable property.
>
> I think I can change the idiom to:
>
> struct net *maybe_get_net(struct net *net)
> {
> if (!atomic_inc_not_zero(&net->count))
> 	net = NULL;
> 	return net;
> }
>
> Which would make dev_seq_open be:
>

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> static int dev_seq_open(struct inode *inode, struct file *file)
> {
> 	struct seq_file *seq;
> 	int res;
> 	res = seq_open(file, &dev_seq_ops);
> 	if (!res) {
> 		seq = file->private_data;
> 		seq->private = maybe_get_net(PROC_NET(inode));
> 		if (!seq->private) {
> 			res = -ENOENT;
> seq_release(inode, file);
> 		}
> 	}
> 	return res;
> }
>
> I'm still asking myself if I need any kind of locking to ensure
> struct net does not go away in the mean time, if so rcu_read_lock()
> should be sufficient.

Agreed -- and it might be possible to leverage the existing locking
in the /proc code.

						Thanx, Paul

> I will read through the generic proc code very carefully after
> I have slept and see if there is what I the code above is sufficient,
> and if so update the patchset.
>
> Eric

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

