Subject: [RFC] [PATCH] memory controller statistics
Posted by yamamoto on Fri, 07 Sep 2007 03:39:42 GMT

View Forum Message <> Reply to Message

hi,
i implemented some statistics for your memory controller.

it's tested with 2.6.23-rc2-mm2 + memory controller v7.
i think it can be applied to 2.6.23-rc4-mm1 as well.

YAMOMOTO Takshi
todo: something like nr_active/inactive in /proc/vmstat.

--- ./mm/memcontrol.c.BACKUP 2007-08-29 17:13:09.000000000 +0900
+++ ./mm/memcontrol.c 2007-09-06 16:26:13.000000000 +0900
@@ -24,6 +24,7 @@

#include <linux/page-flags.h>

#include <linux/bit_spinlock.h>

#include <linux/rcupdate.h>

+#include <linux/seq_file.h>

#include <linux/swap.h>

#include <linux/spinlock.h>

#include <linux/fs.h>

@@ -33,6 +34,54 @@

struct container_subsys mem_container_subsys;

static const int MEM_CONTAINER_RECLAIM_RETRIES = 5;

+enum mem_container_stat_index {

+ [*

+ *for MEM_CONTAINER_TYPE_ALL, usage == pagecache + rss
+ */

+ MEMCONT_STAT_PAGECACHE,

+ MEMCONT_STAT_RSS,

+

+ [*

+ * redundant; usage == charge - uncharge
+ */

+ MEMCONT_STAT_CHARGE,

+ MEMCONT_STAT_UNCHARGE,

+

+ [*

+ * mostly for debug

+ */

+ MEMCONT_STAT_ISOLATE,

+ MEMCONT_STAT_ISOLATE_FAIL,
+ MEMCONT_STAT _NSTATS,

Page 1 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1846
https://new-forum.openvz.org/index.php?t=rview&th=3863&goto=19960#msg_19960
https://new-forum.openvz.org/index.php?t=post&reply_to=19960
https://new-forum.openvz.org/index.php

+};
+
+static const char * const mem_container_stat_desc[] = {
+ [MEMCONT_STAT_PAGECACHE] = "page_cache",
+ [MEMCONT_STAT_RSS] = "rss",
+ [MEMCONT_STAT_CHARGE] = "charge",
+ [MEMCONT_STAT_UNCHARGE] = "uncharge”,
+ [MEMCONT_STAT_ISOLATE] = "isolate",
+ [MEMCONT_STAT_ISOLATE_FAIL] = "isolate_fail",
+};
+
+struct mem_container_stat {
+ atomic_t countfMEMCONT_STAT_NSTATS];
+};
+
+static void mem_container_stat_inc(struct mem_container_stat * stat,
+ enum mem_container_stat_index idx)
+
+
+ atomic_inc(&stat->count[idx]);
+}
+
+static void mem_container_stat_dec(struct mem_container_stat * stat,
+ enum mem_container_stat_index idx)
+
+
+ atomic_dec(&stat->count[idx]);
+}
+
/~k
* The memory controller data structure. The memory controller controls both
* page cache and RSS per container. We would eventually like to provide
@@ -62,6 +111,7 @@ struct mem_container {
*/
spinlock_t Iru_lock;
unsigned long control_type; /* control RSS or RSS+Pagecache */
+ struct mem_container_stat stat;

|

/*

@@ -72,6 +122,12 @@ struct mem_container {

#define PAGE_CONTAINER_LOCK_BIT 0x0

#define PAGE_CONTAINER_LOCK (1 << PAGE_CONTAINER_LOCK_BIT)

+/* XXX hack; shouldn't be here. it really belongs to struct page_container. */
+#define PAGE_CONTAINER_CACHE_BIT 0x1

+#define PAGE_CONTAINER_CACHE (1 << PAGE_CONTAINER_CACHE_BIT)
+

Page 2 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+#define PAGE_CONTAINER_FLAGS (PAGE_CONTAINER_LOCK |
PAGE_CONTAINER_CACHE)
+
/*
* A page_container page is associated with every page descriptor. The
* page_container helps us identify information about the container
@@ -134,9 +190,9 @@ static inline int page_container_locked(
&page->page_container);
}

-void page_assign_page_container(struct page *page, struct page_container *pc)
+static void page_assign_page_container_flags(struct page *page, int flags,
+ struct page_container *pc)

{

- int locked:;

/*
* While resetting the page_container we might not hold the
@@ -145,14 +201,20 @@ void page_assign_page_container(struct p
*/
if (pc)
VM_BUG_ON(!page_container_locked(page));
- locked = (page->page_container & PAGE_CONTAINER_LOCK);
- page->page_container = ((unsigned long)pc | locked);
+ flags |= (page->page_container & PAGE_CONTAINER_LOCK);
+ page->page_container = ((unsigned long)pc | flags);
+
+}
+void page_assign_page_container(struct page *page, struct page_container *pc)
+H
+

+ page_assign_page_container_flags(page, 0, pc);

}

struct page_container *page_get_page_container(struct page *page)
{
return (struct page_container *)
- (page->page_container & ~PAGE_CONTAINER _LOCK);
+ (page->page_container & ~PAGE_CONTAINER_FLAGS);

}

void __always_inline lock _page_container(struct page *page)

@@ -203,6 +265,7 @@ unsigned long mem_container_isolate _page
LIST_HEAD(pc_list);
struct list_head *src;
struct page_container *pc;

+ struct mem_container_stat *stat = &mem_cont->stat;

Page 3 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

if (active)
src = &mem_cont->active_list;
@@ -244,6 +307,9 @@ unsigned long mem_container_isolate_page
if (__isolate_Iru_page(page, mode) == 0) {
list_ move(&page->lru, dst);
nr_taken++;
+ mem_container_stat_inc(stat, MEMCONT_STAT_ISOLATE);
+ }else {
+ mem_container_stat_inc(stat, MEMCONT_STAT_ISOLATE_FAIL);
}
}

@@ -260,9 +326,11 @@ unsigned long mem_container_isolate_page
* 0 if the charge was successful
* < 0 if the container is over its limit
*/
-int mem_container_charge(struct page *page, struct mm_struct *mm)
+static int mem_container_charge_common(struct page *page, struct mm_struct *mm,
+ intis_cache)
{
struct mem_container *mem;
+ struct mem_container_stat *stat;
struct page_container *pc, *race_pc;
unsigned long flags;
unsigned long nr_retries = MEM_CONTAINER_RECLAIM_RETRIES;
@@ -360,7 +428,16 @@ int mem_container_charge(struct page *pa
atomic_set(&pc->ref_cnt, 1);
pc->mem_container = mem;
pc->page = page;
- page_assign_page_container(page, pc);
+ page_assign_page_container_flags(page,
+ is_cache ? PAGE_CONTAINER_CACHE : 0, pc);
+
+ stat = &mem->stat;
+ if (is_cache) {
+ mem_container_stat_inc(stat, MEMCONT_STAT_PAGECACHE);
+}else {
+ mem_container_stat_inc(stat, MEMCONT_STAT_RSS);
+}
+ mem_container_stat_inc(stat, MEMCONT_STAT_CHARGE);

spin_lock_irgsave(&mem->lru_lock, flags);

list_ add(&pc->Iru, &mem->active_list);
@@ -377,6 +454,12 @@ err:

return -ENOMEM;

}

+int mem_container_charge(struct page *page, struct mm_struct *mm)

Page 4 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

H

+
+ return mem_container_charge_common(page, mm, 0);
+}
+
/*
* See if the cached pages should be charged at all?
*/

@@ -388,7 +471,7 @@ int mem_container_cache_charge(struct pa

mem = rcu_dereference(mm->mem_container);
if (mem->control_type == MEM_CONTAINER_TYPE_ALL)
- return mem_container_charge(page, mm);
+ return mem_container_charge_common(page, mm, 1);
else
return O;
}
@@ -411,15 +494,29 @@ void mem_container_uncharge(struct page
return;

if (atomic_dec_and_test(&pc->ref _cnt)) {

+ struct mem_container_stat *stat;

+ intis_cache;

+
page = pc->page;
lock_page_container(page);
mem = pc->mem_container;
CSS_put(&mem->css);

+ [* XXX */

+ is_cache = (page->page_container & PAGE_CONTAINER_CACHE) !=0;
page_assign_page_container(page, NULL);
unlock_page_container(page);
res_counter_uncharge(&mem->res, 1);

+ stat = &mem->stat;

+ if (is_cache) {

+ mem_container_stat_dec(stat, MEMCONT_STAT_PAGECACHE);
+ }else{

+ mem_container_stat_dec(stat, MEMCONT_STAT_RSS);

+

+

+

}
mem_container_stat_inc(stat, MEMCONT_STAT_UNCHARGE);

spin_lock_irgsave(&mem->Iru_lock, flags);
+ BUG_ON(list_empty(&pc->Iru));
list_del_init(&pc->Iru);
spin_unlock_irgrestore(&mem->Iru_lock, flags);
kfree(pc);
@@ -496,6 +593,44 @@ static ssize_t mem_control_type_read(str

Page 5 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

ppos, buf, s - buf);
}

+static void mem_container_stat_init(struct mem_container_stat *stat)
gl
+inti;
+
+ for (i = 0; i < ARRAY_SIZE(stat->count); i++) {
+ atomic_set(&stat->count[i], 0);
+}
+}
+
+static int mem_control_stat_show(struct seq_file *m, void *arg)
H
+ struct container *cont = m->private;
+ struct mem_container *mem_cont = mem_container_from_cont(cont);
+ struct mem_container_stat *stat = &mem_cont->stat;
+inti;
+
+ for (i = 0; i < ARRAY_SIZE(stat->count); i++) {
+ seq_printf(m, "%s %u\n", mem_container_stat_desc]i],
+ (unsigned int)atomic_read(&stat->count]i]));
+}
+ return O;
+}
+
+static const struct file_operations mem_control_stat_file_operations = {
+ .read = seq_read,
+ .llseek = seq_Iseek,
+ .release = single_release,
+};
+
+static int mem_control_stat_open(struct inode *unused, struct file *file)
H
+/* XXX _d_cont*/
+ struct container *cont = file->f_dentry->d_parent->d_fsdata;
+
+ file->f_op = &mem_control_stat_file_operations;
+ return single_open(file, mem_control_stat_show, cont);
+}
+
static struct cftype mem_container_files[] = {
{
.name = "usage",
@@ -518,6 +653,10 @@ static struct cftype mem_container_files
.write = mem_control_type_write,
.read = mem_control_type_read,

}

Page 6 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+{

+ .name = "stat",

+ .open = mem_control_stat _open,
+1},

J§

static struct mem_container init_mem_container;

@@ -541,6 +680,7 @@ mem_container_create(struct container_su
INIT_LIST_HEAD(&mem->inactive_list);
spin_lock_init(&mem->Iru_lock);
mem->control_type = MEM_CONTAINER_TYPE_ALL;

+ mem_container_stat_init(&mem->stat);
return &mem->css;

}

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 7 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

