
Subject: Re: Thoughts on Namespace / Subsystem unification
Posted by serue on Thu, 06 Sep 2007 15:52:13 GMT
View Forum Message <> Reply to Message

Quoting Paul Menage (menage@google.com):
> On 9/3/07, Eric W. Biederman <ebiederm@xmission.com> wrote:
> > >
> > > -how does a process in the parent namespace read/write the shmmni
> > > value in the child namespace? Having to fork a child into the
> > > namespace via something like sys_hijack() seems overly expensive.
> >
> > When complete we should be able to see the appropriate /proc file
> > from if we can see the process. This is just a matter of sorting
> > out the implementation in /proc.
>
> So inside a child namespace we have a "limit" values such as shmmni,
> which normally are system-wide value that root can set to limit total
> resource usage in the OS; if the only way to access this value is via
> a namespace view, then who "owns" that value? - is it something that
> the parent namespace can set to limit the child's total resource
> usage, or is it something that the child can set to limit its own
> total resource usage. If the former, then we break virtualization a
> bit since in the child the value will be read-only; if the latter then
> the parent has less control over the child's resource usage that it
> would like. A separate monitoring/control API that the parent (who
> *knows* that virtualization is involved) can access lets you set an
> external limit as well as an internal limit.

Hopefully a container would only be able to lower it's value, not raise
it. The value is presumably inherited from the system, and the binary
which starts the vm, which is owned by the host admin, can further lower
the value before relinguishing control to the vm admin. Then the host
admin can hopefully do a container enter to investigate or further lower
the value if needed.

That's how I would see it...

>
> > >
> > > But the fact that this is a distinction between namespaces and
> > > subsystems is a bit artificial. I think it's quite possible to imagine
> > > some namespaces whose implementation can quite easily handle tasks
> > > changing their namespace pointer unexpectedly, since they're written
> > > to handle the tricky issues this introduces, and aren't so performance
> > > critical that they can't do locking when necessary.
> >
> > So far I think the extra volatility of subsystems is a misfeature.
> > I think with a little care you could get the cheapness of the

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=3850&goto=19948#msg_19948
https://new-forum.openvz.org/index.php?t=post&reply_to=19948
https://new-forum.openvz.org/index.php

> > current namespaces with the flexibility of containers. Although
> > this is something that needs great care.
>
> For read-only access to a subsystem state object, an rcu_read_lock()
> is sufficient - once in the RCU section, access to a subsystem state
> is as cheap as accessing a namespace - they're both constant indexed
> offsets from a pointer in task_struct. Similarly if you're updating a
> value but aren't too worried if you update the state that the task
> just moved away from (e.g. in a rate-based scheduler, you probably
> don't care too much if you charge the task's old container for, say,
> CPU cycles, rather than its new container).
>
> >
> > Maybe. So far the subsystems interfaces to user space seem
> > overdesigned and inflexible in really weird ways to me.
>
> Can you elaborate on that? I'm always interested in trying to make my
> interfaces less weird where possible ...
>
> > > The ns_container subsystem is a first step towards linking subsystems
> > > and namespaces - it associates an entire set of namespaces (via an
> > > nsproxy) with a "task container", so the nsproxy is on the same level
> > > with other subsystems.
> >
> > And I never understood why anyone did it that way.

Here's what you gain, Eric: you can easily compose a ns_container and
cpuset subsystem onto one hierarchy, and lock a container/vm/whatever to
a cpuset. Ditto for any other resource mgmt containers. So with no
additional namespace related effort, we can leverage all the resource
management implemented through containers, as virtual server resource
mgmt.

> The ns_container subsystem lets you name a collection of namespaces,
> and associate them with a bunch of resource controllers, so in that
> sense it's definitely useful. The question in my mind is whether it
> goes far enough.
>
> > > - should a process be allowed to enter this "container" (a property
> > > specified by the code itself)
> >
> > There are weird security aspects to enter which is why Serge's
> > sys_hijack thing may make more sense. Frankly I'm not convinced
> > that there is a better way to do things.
>
> Agreed for some kinds of namespaces, which is why certain
> namespaces/subsystems might want to declare that they can't be entered
> without a hijack-like interface. But I think it's too strong a

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> restriction to enforce for all namespaces/subsystems.

I'm pretty sure Eric was talking just about namespaces here.
Arbitrarily changing your resource mgmt limits by entering a new
container is presumably no big deal.

(Eric do correct me if I'm wrong :)

> For instance:
>
> - a webserver that wants to charge resource usage based on which
> client it's currently doing work for, needs to be able to shuffle its
> threads between different resource controller instances.
>
> - we're experimenting with using cpusets for memory isolation; part of
> this involves an early initscript that creates a "sys" container and
> isolates all the running system daemons in that container. To do this
> with no support for migrating tasks between cpusets, and only relying
> on sys_hijack, would involve a custom init, I think, rather than a
> simple initscript.
>
> >
> > Currently I am not convinced that we want a first class container
> > object in the kernel. There is all kinds of weirdness that results.
>
> Such as? The "first class container" object doesn't have to be called
> a container, or even directly analogous to a "virtual server
> container". It's just a way to name an association between a
> collection of namespaces/subsystems and a collection of tasks.

-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

