
Subject: Thoughts on Namespace / Subsystem unification
Posted by Paul Menage on Mon, 03 Sep 2007 12:22:07 GMT
View Forum Message <> Reply to Message

Today at the mini-summit I think that the fact that I was only
connected via Skype made it way too difficult for me to get across the
idea of my proposals for exploring the potential benefits to be gained
from unifying namespaces and "task container subsystems", hereafter
just referred to mainly as "subsystems" to avoid confusion over the
term container. (Yes, the name may well be changing to something like
"task sets" ...) So I'll flesh them out a bit in an email instead.
This should be regarded more as a partially-formed concept/vision than
a complete design proposal.

The idea is based on that fact that subsystems and namespaces have a
bunch of similarities:

- associate each process with a piece of state (where that state may
be resource limits/usage, object translation table, etc)

- allow multiple processes to share the same piece of state in
aggregate (e.g. multiple processes allocate resources from the same
limit, or use the same ipc lookup table)

- aren't generally changeable/escapable (except by users with root or
delegated privileges)

- have a shared aggregator object (nsproxy or css_group) that allows
multiple tasks that share the same namespaces/subsystems to cheaply
add/remove refcounts from a whole bunch of objects at once.

- are used as state for code that may have hooks scattered throughout
the kernel code (e.g. namespace indirection, resource checking).

And they also have a few differences:

1) "subsystems" have a generic and flexible control/monitoring API via
the "containerfs" filesystem. Namespaces are viewable internally via
existing Unix/Linux APIs, and may potentially have additional custom
control/monitoring set up as special-purpose code. (But I believe most
don't).

I think that it could be very useful for namespaces to have the same
support for control/monitoring. For example, consider the IPC
namespace. This has a shm_ctlmni field that controls how many shm ids
can be created in total in that namespace. Currently only the root IPC
namespace can have its shm_ctlmni updated via sysctl; child namespaces

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=3850&goto=19890#msg_19890
https://new-forum.openvz.org/index.php?t=post&reply_to=19890
https://new-forum.openvz.org/index.php


aren't configurable in the same way. It could be plausible to have the
shm_ctlmni in other namespaces be updateable too, assuming that the
relevant /proc file was virtualized. But then there are issues such
as:

-how does a process in the parent namespace read/write the shmmni
value in the child namespace? Having to fork a child into the
namespace via something like sys_hijack() seems overly expensive.

- should a namespace' shmmni value be writeable only by its parent, or
writeable by the child too (in which case, how does the parent limit
the child's IPC id creation?)

If the IPC namespace had the concept of an "internal" view (the shmmni
value seen and writeable by the child via normal IPC interfaces) and
an "external" view (the shmmni value seen and writeable by the parent,
via a control file in containerfs) these problems could be resolved.
The child could control its own shmmni value, and the parent could
impose an additional limit to control the child's resources. (If it
turns out that I've misunderstood the IPC namespace and this was
actually a bad example, I hope that you can still appreciate the
generic argument that I'm trying to make here).

2) entering the "container" associated with a subsystem is well
supported since subsystems are expecting the relevant state pointers
to be somewhat volatile; entering namespaces is tricky since lots of
existing code doesn't expect the namespace pointer to be volatile, and
can't necessarily be updated to allow such volatility since they're
performance-critical structures.

But the fact that this is a distinction between namespaces and
subsystems is a bit artificial. I think it's quite possible to imagine
some namespaces whose implementation can quite easily handle tasks
changing their namespace pointer unexpectedly, since they're written
to handle the tricky issues this introduces, and aren't so performance
critical that they can't do locking when necessary.

3) "subsystems" have new instances created via a mkdir in
"containerfs", namespaces have new instances created via clone() or
unshare(). But this could just be considered two different ways of
creating the same kind of object. The container_clone() call already
exists to support the clone/unshare approach used by namespaces. The
choice of which was appropriate (or even both?) could be made by the
kernel code for the subsystem/namespace in question.

4) "namespaces" expire as soon as no tasks are using them;
"subsystems" persist until explicitly deleted. But containerfs already

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


has "notify on release" support; extending this to include "delete on
release" wouldn't be hard for people who wanted their resource
controllers and other subsystems cleaned up as soon as they weren't in
use, and the same code could support the expected behaviour for
namespaces. And in the opposite direction, some users might want to be
able to set up some kind of namespace environment and have it persist
even when there were no active processes in the nsproxy. (Perhaps
pre-allocating environments, or reusing them across multiple
operations).

5) There's no straightforward way to view/list namespaces from
userspace, since the nsproxy is regarded as purely an in-kernel
convenience/performance feature, whereas "subsystems" can be easily
viewed and listed via containerfs directories. But this seems like it
would be useful behaviour for namespaces too.

I hope this demonstrates that the distinction between namespaces and
"subsystems" is at least partially arbitrary, and that namespaces
could benefit from a lot of the support that subsystems get
automatically from the "task containers" framework.

The ns_container subsystem is a first step towards linking subsystems
and namespaces - it associates an entire set of namespaces (via an
nsproxy) with a "task container", so the nsproxy is on the same level
with other subsystems. But based on the similarities/differences
explored above, my argument is that we should explore the idea that
subsystems and namespaces should be considered on the same level,
rather than subsystems be considered as being on the same level as the
nsproxy aggregate. If we could come up with a single abstraction that
captures the similarities and differences between namespaces and
subsystems, this could give the benefits of both.

I'll call the aggregation of multiple such abstractions a "container"
for brevity, although in practice it's somewhere between the concept
of my "task container" and the full vision of containers as
self-contained virtualised environments.

The abstraction (I'm not sure I have an elegant name for it yet) would
have the properties listed as the similarities above; it would be tied
to some kind of aggregator that would be similar to an nsproxy or a
"task container". It would have a generic filesystem-base
control/monitoring API. It would be parameterizable with options such
as:

- should a process be allowed to enter this "container" (a property
specified by the code itself)

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


- whether it can be created via mkdir and/or clone/unshare (specified
by the code itself)

- what action should be taken if this "container" becomes empty
(probably user-specifiable, with options such as "ignore", "notify",
"delete")

(I think these three options capture the essential differences between
"subsystems" and namespaces as they exist currently).

It's a bit different from the arguments of "everything's a namespace"
that have been made in the past, since the new abstraction resembles
more a "task container subsystem" than it does the existing definition
of a namespace.

In a way it would incorporate some of the ideas of the "rcfs"
subsystem that Vatsa proposed a while ago, but with differences such
as not having separate arrays for subsystems and namespaces, and
having the "container" be a much more first-class object, both in
terms of kernel support and in terms of visibility from userspace
(compared to the current situation where an nsproxy is purely an
in-kernel convenience that's not visible from userspace). There would
also be more focus on adding control/monitoring APIs to namespaces.

Paul
_______________________________________________
Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 4 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

