
Subject: Thoughts on virtualizing task containers
Posted by Paul Menage on Fri, 24 Aug 2007 00:18:15 GMT
View Forum Message <> Reply to Message

I'm interested in people's thoughts about the right user API for
virtualizing task containers and resource controllers.

With namespaces, the model is fairly straightforward - you can split a
new namespace off from your own, without caring whether you're the
top-level namespace or some child namespace. So nested namespaces just
work, but at the expense of not being able to see anything that's at a
higher level than your current namespace.

For resource controllers and other task container subsystems, that
model isn't necessarily desired. For example, tasks running in a
cpuset don't see their own cpuset as the root; it's possible (with
appropriate permissions) to modify other cpusets outside of your own
one.

For doing full virtual server containers, root in the virtual server
may well want to make use of task container subsystems, e.g. to
control the amount of CPU cycles or memory that groups of processes
within the virtual server can use. What kinds of controls do we want
to give the host to determine what kind of container operations the
guest virtual server can do? What should the guest see in terms of
task container support?

Ideally, the guest would have what appears to it to be a full (and
isolated) task container implementation to play with, complete with a
full complement of subsystems.

But at the same time, some subsystems might not be easily
virtualizable, and the host might not want the guest to have access to
all subsystems anyway.

One way to handle this might be to have a "virtualize" subsystem that
allows you to set virtualization boundaries; by setting a particular
container's virtualize control file to "true" you'd enforce the rule
that tasks in that container (or child containers) would:

- only be able to mount container hierarchies with task subsystems
mounted in that hierarchy

- see that container as their root container

- not be able to increase the resource limits of their own container.
(similar to the way that the "mems" and "cpus" files in the root
cpuset container directory are read-only, certain control files would

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=787
https://new-forum.openvz.org/index.php?t=rview&th=3802&goto=19755#msg_19755
https://new-forum.openvz.org/index.php?t=post&reply_to=19755
https://new-forum.openvz.org/index.php


become read-only in the virtualized container directory).

Possibly rather than needing a separate "virtualize" subsystem you
could infer virtualization boundaries based on container boundaries in
whichever hierarchy had the nsproxy subsystem mounted (if any). If the
nsproxy subsystem wasn't mounted anywhere, then no virtualization
would occur.

On top of the implementation issues, there are conceptual issues to
deal with such as:

- what do you do with subsystems (e.g. freezer, OOM handler, network
flow id assigner, etc) that are inherently hard to virtualize in a
hierarchical way?

- if the host mounts a container filesystem hierarchy in the guest's
filespace, does the guest see the host's view of containers or the
guest's view? i.e. is the virtualization associated with the mount
point or with the process doing the viewing? (I'm inclined to say the
former)

- how much visibility/control does the host have into any child task
containers created by the guest?

- can the guest split the subsystems that are visible to it amongst
multiple hierarchies? Or do we rule that guests can only have access
to a single hierarchy?

Paul
_______________________________________________
Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

