
Subject: Re: [RFC][PATCH] Make access to taks's nsproxy liter
Posted by ebiederm on Wed, 08 Aug 2007 17:03:20 GMT
View Forum Message <> Reply to Message

Oleg Nesterov <oleg@tv-sign.ru> writes:

> On 08/08, Pavel Emelyanov wrote:
>>
>> When someone wants to deal with some other taks's namespaces
>> it has to lock the task and then to get the desired namespace
>> if the one exists. This is slow on read-only paths and may be
>> impossible in some cases.
>>
>> E.g. Oleg recently noticed a race between unshare() and the
>> (just sent for review) pid namespaces - when the task notifies
>> the parent it has to know the parent's namespace, but taking
>> the task_lock() is impossible there - the code is under write
>> locked tasklist lock.
>>
>> On the other hand switching the namespace on task (daemonize)
>> and releasing the namespace (after the last task exit) is rather
>> rare operation and we can sacrifice its speed to solve the
>> issues above.
>
> Still it is a bit sad we slow down process's exit. Perhaps I missed
> some other ->nsproxy access, but can't we make a simpler patch?
>
> --- kernel/fork.c	2007-07-28 16:58:17.000000000 +0400
> +++ /proc/self/fd/0	2007-08-08 20:30:33.325216944 +0400
> @@ -1633,7 +1633,9 @@ asmlinkage long sys_unshare(unsigned lon
>
> 		if (new_nsproxy) {
> 			old_nsproxy = current->nsproxy;
> +			read_lock(&tasklist_lock);
> 			current->nsproxy = new_nsproxy;
> +			read_unlock(&tasklist_lock);
> 			new_nsproxy = old_nsproxy;
> 		}
>
>
> This way ->nsproxy is stable under task_lock() or write_lock(tasklist).
>
>> +void switch_task_namespaces(struct task_struct *p, struct nsproxy *new)
>> +{
>> +	struct nsproxy *ns;
>> +
>> +	might_sleep();
>> +

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=220
https://new-forum.openvz.org/index.php?t=rview&th=3777&goto=19609#msg_19609
https://new-forum.openvz.org/index.php?t=post&reply_to=19609
https://new-forum.openvz.org/index.php

>> +	ns = p->nsproxy;
>> +	if (ns == new)
>> +		return;
>> +
>> +	if (new)
>> +		get_nsproxy(new);
>> +	rcu_assign_pointer(p->nsproxy, new);
>> +
>> +	if (ns && atomic_dec_and_test(&ns->count)) {
>> +		/*
>> +		 * wait for others to get what they want from this
>> +		 * nsproxy. cannot release this nsproxy via the
>> +		 * call_rcu() since put_mnt_ns will want to sleep
>> +		 */
>> +		synchronize_rcu();
>> +		free_nsproxy(ns);
>> +	}
>> +}
>
> (I may be wrong, Paul cc'ed)
>
> This is correct with the current implementation of RCU, but strictly speaking,
> we can't use synchronize_rcu() here, because write_lock_irq() doesn't imply
> rcu_read_lock() in theory.

But we should be able to do:

write_lock_irq();
rcu_read_lock();
	muck with other tasks nsproxy.
rcu_read_unlock();
write_unlock_irq();

Which would make rcu fine.

The real locking we have is that only a task is allowed to modify it's
own nsproxy pointer. Other processes are not.

The practical question is how do we enable other processes to read
a particular tasks nsproxy or something pointed to by it?

Eric

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

