
Subject: Re: [PATCH 14/15] Destroy pid namespace on init's death
Posted by Oleg Nesterov on Thu, 02 Aug 2007 17:08:20 GMT
View Forum Message <> Reply to Message

On 08/02, Oleg Nesterov wrote:
>
> On 08/02, Kirill Korotaev wrote:
> >
> > Oleg Nesterov wrote:
> > > 
> > > As it was already discussed, the current code is buggy, and should be
> > > fixed.
> > 
> > I'm not that sure it MUST be fixed. There are no multi-threaded init's anywhere.
> > Oleg, does it worth changing without reasons?
> 
> I don't know. But the kernel already tries to support multi-threaded init's.
> Look at de_thread(), it could be simplified a bit (and we don't need tasklist
> lock for zap_other_threads()) if we forbid them.
> 
> Still. A non-root user does clone(CLONE_PIDNS), then clone(CLONE_THREAD),
> and sys_exit() from the main thread, then proceeds with fork()s. Now this
> ns has the global init as a child reaper, and admin can't kill entire pid_ns
> by killing its init. Worse, (see the reply to Sukadev' message), we should
> not reset pid_ns->child_reaper before zap_pid_ns_processes(). In that case
> ->child_reaper points to the freed task when the last thread exits, this
> means the non-root user can crash the kernel.
> 
> Or, some embedded system uses multi-threaded init, and the kernel panics
> when the main thread exits.
> 
> Perhaps this is just a "quality of implementation" question. sys_exit()
> from the main thread should be OK, why /sbin/init should be special?
> 
> That said, I personally do not think that multi-threaded init is terribly
> useful.

So I think the patch below makes sense for now. Note that it removes the
games with pid_ns->child_reaper: this doesn't work currently, and this
has to be modified when we actually support pid namespaces anyway.

Oleg.

--- t/kernel/exit.c~MTINIT	2007-07-28 16:58:17.000000000 +0400
+++ t/kernel/exit.c	2007-08-02 20:59:59.000000000 +0400
@@ -895,6 +895,14 @@ static void check_stack_usage(void)
 static inline void check_stack_usage(void) {}
 #endif

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=691
https://new-forum.openvz.org/index.php?t=rview&th=2965&goto=19544#msg_19544
https://new-forum.openvz.org/index.php?t=post&reply_to=19544
https://new-forum.openvz.org/index.php


 
+static inline void exit_child_reaper(struct task_struct *tsk)
+{
+	if (likely(tsk->group_leader != child_reaper(tsk)))
+		return;
+
+	panic("Attempted to kill init!");
+}
+
 fastcall NORET_TYPE void do_exit(long code)
 {
 	struct task_struct *tsk = current;
@@ -908,13 +916,6 @@ fastcall NORET_TYPE void do_exit(long co
 		panic("Aiee, killing interrupt handler!");
 	if (unlikely(!tsk->pid))
 		panic("Attempted to kill the idle task!");
-	if (unlikely(tsk == child_reaper(tsk))) {
-		if (tsk->nsproxy->pid_ns != &init_pid_ns)
-			tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
-		else
-			panic("Attempted to kill init!");
-	}
-
 
 	if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
 		current->ptrace_message = code;
@@ -964,6 +965,7 @@ fastcall NORET_TYPE void do_exit(long co
 	}
 	group_dead = atomic_dec_and_test(&tsk->signal->live);
 	if (group_dead) {
+		exit_child_reaper(tsk);
 		hrtimer_cancel(&tsk->signal->real_timer);
 		exit_itimers(tsk->signal);
 	}

_______________________________________________
Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

