Subject: Re: [PATCH 0/16] Pid nhamespaces
Posted by Herbert Poetzl on Mon, 09 Jul 2007 12:02:36 GMT

View Forum Message <> Reply to Message

On Fri, Jul 06, 2007 at 12:01:59PM +0400, Pavel Emelianov wrote:
> This is "submition for inclusion™ of hierarchical, not kconfig

> configurable, zero overheaded ;) pid hamespaces.

>

> The overall idea is the following:

>

> The namespace are organized as a tree - once a task is cloned
> with CLONE_NEWPIDS (yes, I've also switched to it :) the new
> namespace becomes the parent's child and tasks living in the

> parent namespace see the tasks from the new one. The numerical
> ids are used on the kernel-user boundary, i.e. when we export

> pid to user we show the id, that should be used to address the

> task in question from the namespace we're exporting this id to.

how does that behave when:

a) the parent dies and gets reaped?
b) the 'spawned' init dies, but other tasks
inside the pid space are still active?
c) what visibility rules do apply for the
various spaces (including the default host space)?

> The main difference from Suka's patches are the following:

>

> 0. Suka's patches change the kernel/pid.c code too heavy.

> This set keeps the kernel code look like it was without

> the patches. However, this is a minor issue. The major is:

>

> 1. Suka's approach is to remove the notion of the task's
numerical pid from the kernel at all. The numbers are

used on the kernel-user boundary or within the kernel but
with the namespace this nr belongs to. This results in
massive changes of struct's members fro int pid to struct
pid *pid, task->pid becomes the virtual id and so on and

so forth.

My approach is to keep the good old logic in the kernel.
The task->pid is a global and unique pid, find_pid() finds
the pid by its global id and so on. The virtual ids appear

on the user-kernel boundary only. Thus drivers and other
kernel code may still be unaware of pids unless they do not
communicate with the userspace and get/put numerical pids.

VVVVVVVYVVYVYVYV

interesting ... not sure that is what kernel folks
have in mind though (IIRC, the struct pid change was

Page 1 of 2 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=206
https://new-forum.openvz.org/index.php?t=rview&th=3736&goto=19228#msg_19228
https://new-forum.openvz.org/index.php?t=post&reply_to=19228
https://new-forum.openvz.org/index.php

considered a kernel side cleanup)

> And some more minor differences:

>

> 2. Suka's patches have the limit of pid namespace nesting.

> My patches do not.

>

> 3. Suka assumes that pid namespace can live without proc mount
and tries to make the code work with pid_ns->proc_mnt change
from NULL to not-NULL from times to times.

My code calls the kern_mount() at the namespace creation and
thus the pid_namespace always works with proc.

V V.V V

shouldn't that be done by userspace instead?

> There are some small issues that | can describe if someone is
> interested.

>

> The tests like nptl perf, unixbench spawn, getpid and others

> didn't reveal any performance degradation in init_namespace
> with the RHELS5 kernel .config file. | admit, that different

> .config-s may show that patches hurt the performance, but the
> intention was *not* to make the kernel work worse with popular
> distributions.

>

> This set has some ways to move forward, but this is some kind
> of a core, that do not change the init_pid_namespace behavior
> (checked with LTP tests) and may require some hacking to do
> with the namespaces only.

TIA,
Herbert

> Patches apply to 2.6.22-rc6-mml1.

>

> Containers mailing list

> Containers@lists.linux-foundation.org

> https://lists.linux-foundation.org/mailman/listinfo/containers

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

