Subject: [PATCH 11/16] Add support for multiple kmem caches for pids
Posted by Pavel Emelianov on Fri, 06 Jul 2007 08:09:21 GMT

View Forum Message <> Reply to Message

Unike Suka's patches | don not limit the level of pid nesting
creating the caches on demand, depending on the namespace's level.

Each kmem cache is names "pid_<NR>", where <NR> is the level
of pid namespace and thus - the number of virtual pids in it.

Signed-off-by: Pavel Emelianov <xemul@openvz.org>

pid.c| 61 +++++++++++++++tttttttttt bttt bbb
1 files changed, 56 insertions(+), 5 deletions(-)

--- ./kernel/pid.c.ve10 2007-07-06 11:04:15.000000000 +0400

+++ ./kernel/pid.c 2007-07-06 11:04:48.000000000 +0400

@@ -32,7+32,6 @@

#define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift)
static struct hlist_head *pid_hash;

static int pidhash_shift;

-static struct kmem_cache *pid_cachep;

struct pid init_struct_pid = INIT_STRUCT_PID;

int pid_max = PID_MAX_DEFAULT;
@@ -179,11 +178,15 @@ static int next_pidmap(struct pid_namesp

fastcall void put_pid(struct pid *pid)
{
+ struct pid_namespace *ns;
+
if (Ipid)
return;
+
+ ns = pid->numbers|[0].ns;
if ((atomic_read(&pid->count) == 1) ||
atomic_dec_and_test(&pid->count))
- kmem_cache_free(pid_cachep, pid);
+ kmem_cache_free(ns->pid_cachep, pid);
}
EXPORT_SYMBOL_GPL(put_pid);

@@ -212,7 +215,7 @@ struct pid *alloc_pid(struct pid_namespa
enum pid_type type;
int nr=-1;

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=3736&goto=19200#msg_19200
https://new-forum.openvz.org/index.php?t=post&reply_to=19200
https://new-forum.openvz.org/index.php

- pid = kmem_cache_alloc(pid_cachep, GFP_KERNEL);

+ pid = kmem_cache_alloc(init_pid_ns.pid_cachep, GFP_KERNEL);
if ('pid)
goto out;

@@ -233,7 +236,7 @@ out:
return pid;

out_free:
- kmem_cache_free(pid_cachep, pid);
+ kmem_cache_free(init_pid_ns.pid_cachep, pid);
pid = NULL;
goto out;
}
@@ -378,6 +381,52 @@ struct pid *find_ge_pid(int nr, struct p

}
EXPORT_SYMBOL_GPL(find_get_pid);

+struct pid_cache {

+int level;

+ char name[16];

+ struct kmem_cache *cachep;

+ struct list_head Ih;

+};

+

+static LIST_HEAD(pid_caches);

+static DEFINE_MUTEX(pid_cache_mutex);
+

+static struct kmem_cache *create_pid_cachep(int level)
+H

+ struct pid_cache *pc;

+ struct kmem_cache *cachep = NULL,;

+

+ mutex_lock(&pid_cache_mutex);

+ list_for_each_entry (pc, &pid_caches, Ih)

+ if (pc->level == level) {
+ cachep = pc->cachep;
+ goto out;

+}

+

+ pc = kzalloc(sizeof(struct pid_cache), GFP_KERNEL);
+if (pc == NULL)

+ goto out;

+

+ snprintf(pc->name, sizeof(pc->name), "pid_%d", level);
+ cachep = kmem_cache_create(pc->name,

+ sizeof(struct pid) + level * sizeof(struct pid_number),
+ 0, SLAB_HWCACHE_ALIGN, NULL, NULL);

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ if (cachep == NULL)

+ goto out_free;

+

+ pc->cachep = cachep;

+ pc->level = level;

+ list_add(&pc->lh, &pid_caches);

+ pc = NULL;
+
+out_free:

+if (pc '= NULL)

+ kfree(pc);

+out:

+ mutex_unlock(&pid_cache_mutex);

+ return cachep;

+}

+

struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
{
BUG_ON(lold_ns);

@@ -425,5 +474,7 @@ void __init pidmap_init(void)
set_bit(0, init_pid_ns.pidmap|[0].page);
atomic_dec(&init_pid_ns.pidmap[0].nr_free);

- pid_cachep = KMEM_CACHE(pid, SLAB_PANIC);
+ init_pid_ns.pid_cachep = create_pid_cachep(0);
+ if (init_pid_ns.pid_cachep == NULL)

+ panic("Can't create pid cachep");

}

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

