Subject: [PATCH 5/16] Make proc be mountable from different pid namespaces
Posted by Pavel Emelianov on Fri, 06 Jul 2007 08:05:42 GMT

View Forum Message <> Reply to Message

Each pid namespace should have the proc_mnt pointer even when
there's no user mounts to make proc_flush_task() work. To do
this we call the kern_mount() to obtain the proc mount point.

Since the current pid_namespace during this call is not the
newly created one we use the introduced MS_KERNMOUNT flag
to pass the namespace pointer to the proc_get_sb() call.

Signed-off-by: Pavel Emelianov <xemul@openvz.org>

fs/proc/inode.c | 20 +++++--

fs/proc/internal.h | 2

fs/proc/root.c | 116 ++++++++++++++++++++H+ bbb -
include/linux/pid_namespace.h | 3+

include/linux/proc_fs.h | 15 +++++

5 files changed, 147 insertions(+), 9 deletions(-)

diff -upr linux-2.6.22-rc4-mm2.orig/fs/proc/inode.c linux-2.6.22-rc4-mm2-2/fs/proc/inode.c
--- linux-2.6.22-rc4-mm2.orig/fs/proc/inode.c 2007-06-14 12:14:29.000000000 +0400
+++ linux-2.6.22-rc4-mm2-2/fs/proc/inode.c 2007-07-04 19:00:38.000000000 +0400
@@ -16,6 +16,7 @@

#include <linux/init.h>

#include <linux/module.h>

#include <linux/smp_lock.h>

+#include <linux/pid_namespace.h>

#include <asm/system.h>

#include <asm/uaccess.h>

@@ -429,9 +430,17 @@ out_mod:
return NULL,;

}

-int proc_fill_super(struct super_block *s, void *data, int silent)
+int proc_fill_super(struct super_block *s, struct pid_namespace *ns)
{
struct inode * root_inode;
+ struct proc_dir_entry * root_dentry;
+
+ root_dentry = &proc_root;
+ if (ns != &init_pid_ns) {
+ root_dentry = create_proc_root();
+ if (root_dentry == NULL)

Page 1 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=3736&goto=19194#msg_19194
https://new-forum.openvz.org/index.php?t=post&reply_to=19194
https://new-forum.openvz.org/index.php

+ goto out_no_de;

+}

s->s_flags |= MS_NODIRATIME | MS_NOSUID | MS_NOEXEC,;
s->s_blocksize = 1024;

@@ -440,8 +449,8 @@ int proc_fill_super(struct super_block *
S->S_0p = &proc_sops;
s->s_time_gran = 1,

- de_get(&proc_root);
- root_inode = proc_get_inode(s, PROC_ROOT_INO, &proc_root);
+ de_get(root_dentry);
+ root_inode = proc_get_inode(s, PROC_ROOT_INO, root_dentry);
if (Iroot_inode)
goto out_no_root;
root_inode->i_uid = 0;
@@ -452,9 +461,10 @@ int proc_fill_super(struct super_block *
return O;

out_no_root:
- printk("proc_read_super: get root inode failed\n");
iput(root_inode);
- de_put(&proc_root);
+ de_put(root_dentry);
+out_no_de:
+ printk("proc_read_super: get root inode failed\n");
return -ENOMEM;
}
MODULE_LICENSE("GPL");
diff -upr linux-2.6.22-rc4-mm2.orig/fs/proc/internal.h linux-2.6.22-rc4-mmz2-2/fs/proc/internal.h
--- linux-2.6.22-rc4-mm2.orig/fs/proc/internal.h 2007-06-14 12:14:29.000000000 +0400
+++ linux-2.6.22-rc4-mm2-2/fs/proc/internal.h 2007-07-04 19:00:38.000000000 +0400
@@ -71,3 +71,5 @@ static inline int proc_fd(struct inode *
{
return PROC_I(inode)->fd;

}

+

+struct proc_dir_entry * create_proc_root(void);

diff -upr linux-2.6.22-rc4-mm2.orig/fs/proc/root.c linux-2.6.22-rc4-mm2-2/fs/proc/root.c
--- linux-2.6.22-rc4-mm2.orig/fs/proc/root.c 2007-06-14 12:14:29.000000000 +0400
+++ linux-2.6.22-rc4-mm2-2/fs/proc/root.c 2007-07-04 19:00:39.000000000 +0400
@@ -18,32 +18,89 @@

#include <linux/bitops.h>

#include <linux/smp_lock.h>

#include <linux/mount.h>

+#include <linux/pid_namespace.h>

#include "internal.h"

Page 2 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

struct proc_dir_entry *proc_net, *proc_net_stat, *proc_bus, *proc_root_fs, *proc_root_driver;

+static int proc_test_super(struct super_block *sb, void *data)
gl
+ return sb->s_fs_info == data;
+)
+
+static int proc_set_super(struct super_block *sb, void *data)
gl
+ struct pid_namespace *ns;
+
+ ns = (struct pid_namespace *)data;
+ sb->s_fs_info = get_pid_ns(ns);
+ return set_anon_super(sb, NULL);
+}
+
static int proc_get_sb(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data, struct vismount *mnt)
{
+int err,;
+ struct super_block *sb;
+ struct pid_namespace *ns;
+ struct proc_inode *ei;
+
if (proc_mnt) {
[* Seed the root directory with a pid so it doesn't need
* to be special in base.c. | would do this earlier but
* the only task alive when /proc is mounted the first time
* is the init_task and it doesn't have any pids.
*/
- struct proc_inode *ei;
ei = PROC_I(proc_mnt->mnt_sb->s_root->d_inode);
if (lei->pid)
ei->pid = find_get_pid(1);
}
- return get_sb_single(fs_type, flags, data, proc_fill_super, mnt);
+
+if (flags & MS_KERNMOUNT)
+ ns = (struct pid_namespace *)data;
+ else
+ ns = current->nsproxy->pid_ns;
+
+ sb = sget(fs_type, proc_test_super, proc_set_super, ns);
+if (IS_ERR(sb))
+ return PTR_ERR(sb);
+
+ if (!sb->s_root) {

Page 3 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

sb->s_flags = flags;

err = proc_fill_super(sb, ns);
if (err) {
up_write(&sb->s_umount);
deactivate_super(sb);
return err;

}

ei = PROC_I(sb->s_root->d_inode);
if ('ei->pid)

ei->pid = find_get_pid(1);
sb->s_flags |= MS_ACTIVE;

mntput(ns->proc_mnt);
ns->proc_mnt = mnt;
}
+
+ return simple_set_mnt(mnt, sb);
+}
+
+static void proc_kill_sb(struct super_block *sb)
+
+ struct pid_namespace *ns;
+
+ ns = (struct pid_namespace *)sb->s_fs_info;
+ kill_anon_super(sb);
+if (ns != NULL)
+ put_pid_ns(ns);
}

static struct file_system_type proc_fs_type ={
.name = "proc",
.get_sb = proc_get_sb,

- .kill_sb = kill_anon_super,

+ .kill_sb = proc_Kill_sb,

2

+ 4+ +++ A+ o+

void __init proc_root_init(void)

@@ -60,6 +117,7 @@ void __init proc_root_init(void)
unregister_filesystem(&proc_fs_type);
return;

}

+
proc_misc_init();
proc_net = proc_mkdir("net", NULL);
proc_net_stat = proc_mkdir("net/stat", NULL);

@@ -153,6 +211,58 @@ struct proc_dir_entry proc_root = {
Jparent = &proc_root,

Page 4 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

h

+/*
+ * creates the proc root entry for different proc trees
+ */

+

+struct proc_dir_entry * create_proc_root(void)
+

+ struct proc_dir_entry *de;

+

+ de = kzalloc(sizeof(struct proc_dir_entry), GFP_KERNEL);
+if (de '= NULL) {

+ de->low_ino = PROC_ROOT_INO;

de->namelen = 5;

de->name = "/proc";

de->mode = S_IFDIR | S_IRUGO | S_IXUGO;
de->nlink = 2;

de->proc_iops = &proc_root_inode_operations;
de->proc_fops = &proc_root_operations;

+ de->parent = de;

+}

+ return de;

+}

+

+int pid_ns_prepare_proc(struct pid_namespace *ns)

+

+ struct vfsmount *mnt;

+

+ mnt = kern_mount_data(&proc_fs_type, ns);

+if (IS_ERR(mnt))

+ [*

* do not save the reference from the proc super

* block to the namespace. otherwise we will get

* a circular reference ns->proc_mnt->mnt_sb->ns

*/

put_pid_ns(ns);

+ return O;

+}

+

+void pid_ns_release_proc(struct pid_namespace *ns)
gl

+ struct vfsmount *mnt;

+

+ mnt = ns->proc_mnt;

+ [*

+ * do not put the namespace reference as it wa not get in
+ * pid_ns_prepare_proc(). safe to set NULL here as this
+ * namespace is already dead and all the proc mounts are

+ 4+ + + + +

+ 4+ + + +

Page 5 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ *released so nobudo will se this super block
+ */
+ mnt->mnt_sb->s fs_info = NULL,;
+ mntput(mnt);
+}
+
EXPORT_SYMBOL(proc_symlink);
EXPORT_SYMBOL(proc_mkdir);
EXPORT_SYMBOL(create_proc_entry);
diff -upr linux-2.6.22-rc4-mm2.orig/include/linux/pid_namespace.h
linux-2.6.22-rc4-mm2-2/include/linux/pid_namespace.h
--- linux-2.6.22-rc4-mm2.orig/include/linux/pid_namespace.h 2007-06-14 12:14:29.000000000
+0400
+++ linux-2.6.22-rc4-mm2-2/include/linux/pid_namespace.h 2007-07-04 19:00:39.000000000
+0400
@@ -16,6 +15,9 @@ struct pidmap {
struct task_struct *child_reaper;
struct kmem_cache *pid_cachep;
struct pid_namespace *parent;
+#ifdef CONFIG_PROC_FS
+ struct vfsmount *proc_mnt;
+#endif

|8

extern struct pid_namespace init_pid_ns;

diff -upr linux-2.6.22-rc4-mm2.orig/include/linux/proc_fs.h
linux-2.6.22-rc4-mm2-2/include/linux/proc_fs.h

--- linux-2.6.22-rc4-mm2.orig/include/linux/proc_fs.h 2007-06-14 12:14:29.000000000 +0400
+++ linux-2.6.22-rc4-mmz2-2/include/linux/proc_fs.h 2007-07-04 19:00:38.000000000 +0400
@@ -126,7 +126,8 @@ extern struct proc_dir_entry *create_pro

extern void remove_proc_entry(const char *name, struct proc_dir_entry *parent);

extern struct vfsmount *proc_mnt;

-extern int proc_fill_super(struct super_block *,void *,int);

+struct pid_namespace;

+extern int proc_fill_super(struct super_block *, struct pid_namespace *);

extern struct inode *proc_get_inode(struct super_block *, unsigned int, struct proc_dir_entry *);

/*

@@ -143,6 +144,9 @@ extern const struct file_operations proc
extern const struct file_operations proc_kmsg_operations;
extern const struct file_operations ppc_htab_operations;

+extern int pid_ns_prepare_proc(struct pid_namespace *ns);
+extern void pid_ns_release_proc(struct pid_namespace *ns);
+

/~k

* proc_tty.c

Page 6 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

*/
@@ -248,6 +254,15 @@ static inline void proc_tty unregister_d

extern struct proc_dir_entry proc_root;

+static inline int pid_ns_prepare_proc(struct pid_namespace *ns)
+

+ return O;

+}

+

+static inline void pid_ns_release_proc(struct pid_namespace *ns)
+H

+}
+
#endif /* CONFIG_PROC_FS */

#if 1defined(CONFIG_PROC_KCORE)

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 7 of 7 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

