
Subject: [PATCH 16/28] [FLAT 1/6] Changes in data structures for flat model
Posted by Pavel Emelianov on Fri, 15 Jun 2007 16:16:35 GMT
View Forum Message <> Reply to Message

This patch opens the flat model patches.

The flat model idea is that struct pid has two numbers. The first one
(pid->nr) is a global one and is unique in the system. The second one
(pid->vnr) is a virtual pid. It is used on the kernel user boundary only.

I.e. it is shown to user via getpid(), proc, etc, and when the application
passes pid to the kernel to make something with proc, this number is treated
as the virtual one and the pid/task is searched in the namespace caller task
belongs to.

The struct pid must have two numerical values, the pointer to the namespace and
additional hlist_node to hash the pid in two hash-tables.

The virtual ids are stored on struct task_struct and struct signal together with
their global pairs for optimisation.

Signed-off-by: Pavel Emelianov <xemul@openvz.org>

 pid.h | 19 +++++++++++++++++++
 sched.h | 10 +++++++++-
 2 files changed, 28 insertions(+), 1 deletion(-)

--- ./include/linux/pid.h.flatdatast	2007-06-15 15:08:39.000000000 +0400
+++ ./include/linux/pid.h	2007-06-15 15:22:18.000000000 +0400
@@ -40,12 +40,31 @@ enum pid_type
 * processes.
 */

+/*
+ * flat pid namespaces.
+ * each task hash two ids of each type - the global id and the virtual one
+ * the latter one is used on kernel-user boundary only. i.e. if the kernel
+ * wants to save the task's pid for some time it may store the global one
+ * and the use find_pid()/find_task_by_pid() routines as it was used before.
+ * when an id comes from the usersoace or it must go to user the virtual
+ * id must be used.
+ */
+
 struct pid

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=725
https://new-forum.openvz.org/index.php?t=rview&th=3681&goto=18942#msg_18942
https://new-forum.openvz.org/index.php?t=post&reply_to=18942
https://new-forum.openvz.org/index.php

 {
 	atomic_t count;
 	/* Try to keep pid_chain in the same cacheline as nr for find_pid */
 	int nr;
 	struct hlist_node pid_chain;
+#ifdef CONFIG_PID_NS_FLAT
+	/*
+	 * virtual number, the namespace this pid belongs to and the hlist_node
+	 * to find this pid by vnr in hash
+	 */
+	int vnr;
+	struct pid_namespace *ns;
+	struct hlist_node vpid_chain;
+#endif
 	/* lists of tasks that use this pid */
 	struct hlist_head tasks[PIDTYPE_MAX];
 	struct rcu_head rcu;
--- ./include/linux/sched.h.flatdatast	2007-06-15 15:14:33.000000000 +0400
+++ ./include/linux/sched.h	2007-06-15 15:19:14.000000000 +0400
@@ -482,7 +482,10 @@ struct signal_struct {
 		pid_t session __deprecated;
 		pid_t __session;
 	};
-
+#ifdef CONFIG_PID_NS_FLAT
+	pid_t vpgrp;
+	pid_t vsession;
+#endif
 	/* boolean value for session group leader */
 	int leader;

@@ -944,6 +947,11 @@ struct task_struct {
 	unsigned did_exec:1;
 	pid_t pid;
 	pid_t tgid;
+#ifdef CONFIG_PID_NS_FLAT
+	/* hash the virtual ids as well */
+	pid_t vpid;
+	pid_t vtgid;
+#endif

 #ifdef CONFIG_CC_STACKPROTECTOR
 	/* Canary value for the -fstack-protector gcc feature */

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

