Subject: Re: [RFC][PATCH 0/6] Add group fairness to CFS - v1
Posted by Ingo Molnar on Mon, 11 Jun 2007 19:37:35 GMT

View Forum Message <> Reply to Message

* Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> wrote:

> Ingo,
> Here's an update of the group fairness patch | have been
> working on. Its against CFS v16 (sched-cfs-v2.6.22-rc4-mm2-v16.patch).

thanks!

> The core idea is to reuse much of CFS logic to apply fairness at

> higher hierarchical levels (user, container etc). In this regard CFS

> engine has been modified to deal with generic 'schedulable entities'.
> The patches introduce two essential structures in CFS core:

>

> - struct sched_entity

> - represents a schedulable entity in a hierarchy. Task

> s the lowest element in this hierarchy. Its ancestors

> could be user, container etc. This structure stores

> essential attributes/execution-history (wait_runtime etc)

> which is required by CFS engine to provide fairness between

> 'struct sched_entities' at the same hierarchy.
>
>
>
>
>
>

- struct Irq

- represents (per-cpu) runqueue in which ready-to-run
'struct sched_entities' are queued. The fair clock
calculation is split to be per 'struct Irq'.

> Here's a brief description of the patches to follow:

>

> Patches 1-3 introduce the essential changes in CFS core to support
> this concept. They rework existing code w/o any (intended!) change in
> functionality.

i currently have these 3 patches applied to the CFS queue and it's
looking pretty good so far! If it continues to be problem-free i'll
release them as part of -v17, just to check that they truly have no bad
side-effects (they shouldnt). Then #4 can go into -v18.

i've attached my current -v17 tree - it should apply mostly cleanly
ontop of the -mm queue (with a minor number of fixups). Could you
refactor the remaining 3 patches ontop of this base? There's some
rejects in the last 3 patches due to the update_load_fair() change.

> Patch 4 fixes some bad interaction between SCHED_RT and SCHED_NORMAL
> tasks in current CFS.

Page 1 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=122
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18882#msg_18882
https://new-forum.openvz.org/index.php?t=post&reply_to=18882
https://new-forum.openvz.org/index.php

btw., the plan here is to turn off 'bit 0' in sched_features: i.e. to

use the precise statistics to calculate Irg->cpu_load[], not the
timer-irg-sampled imprecise statistics. Dmitry has fixed a couple of
bugs in it that made it not work too well in previous CFS versions, but
now we are ready to turn it on for -v17. (indeed in my tree it's already
turned on - i.e. sched_features defaults to '14")

> Patch 5 introduces basic changes in CFS core to support group
> fairness.

>

> Patch 6 hooks up scheduler with container patches in mm (as an
> interface for task-grouping functionality).

ok. Kirill, how do you like Srivatsa's current approach? Would be nice
to kill two birds with the same stone, if possible :-)

> Note: | have noticed that running lat_ctx in a loop for 10 times

> doesnt give me good results. Basically | expected the loop to take

> same time for both users (when run simultaneously), whereas it was
> taking different times for different users. | think this can be solved

> by increasing sysctl_sched_runtime_limit at group level (to remeber
> execution history over a longer period).

you'll get the best hackbench results by using SCHED_BATCH:
chrt -b 0 ./hackbench 10

or indeed increasing the runtime_limit would work too.

Ingo

Index: linux/Makefile

--- linux.orig/Makefile

+++ linux/Makefile

@@ -1,7+1,7 @@

VERSION =2

PATCHLEVEL =6

SUBLEVEL =21
-EXTRAVERSION = .4-cfs-v16
+EXTRAVERSION = .4-cfs-v17
NAME = Nocturnal Monster Puppy

DOCUMENTATION
Index: linux/fs/proc/array.c

--- linux.orig/fs/proc/array.c

Page 2 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+++ linux/fs/proc/array.c

@@ -319,7 +319,7 @@ static clock_t task utime(struct task_st
* Use CFS's precise accounting, if available:
*
if (!(sysctl_sched_features & 128)) {

- u64 temp = (u64)nsec_to_clock_t(p->sum_exec_runtime);

+ u64 temp = (u4)nsec_to_clock t(p->se.sum_exec_runtime);

if (total) {
temp *= utime;
@@ -341,7 +341,7 @@ static clock_t task stime(struct task_st
* by userspace grows monotonically - apps rely on that):
*/
if (I(sysctl_sched_features & 128))
- stime = nsec_to_clock_t(p->sum_exec_runtime) - task_utime(p);
+ stime = nsec_to_clock_t(p->se.sum_exec_runtime) - task_utime(p);

return stime;

}

Index: linux/include/linux/sched.h

--- linux.orig/include/linux/sched.h
+++ linux/include/linux/sched.h
@@ -534,8 +534,7 @@ struct signal_struct {

#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO)

#define rt_task(p) rt_prio((p)->prio)

-#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH))

-#define is_rt_policy(p) ((p) '= SCHED_NORMAL && (p) '= SCHED_BATCH)
+#define is_rt_policy(p) ((p) == SCHED_FIFO || (p) == SCHED_RR)

#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy))

/*
@@ -819,6 +818,29 @@ struct sched_class {
void (*task _new) (struct rg *rq, struct task_struct *p);

|8

+/* CFS stats for a schedulable entity (task, task-group etc) */
+struct sched_entity {

+ int load_weight; /* for niceness load balancing purposes */
+inton_rq;

+ struct rb_node run_node;

+ u64 wait_start_fair;

+ u64 wait_start;

+ u64 exec_start;

+ u6b4 sleep_start, sleep_start_fair;

+ u64 block_start;

+ u64 sleep_max;

Page 3 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ u64 block_max;
+ u64 exec_max;
+ u64 wait_max;
+ u64 last_ran;
+
+ s64 wait_runtime;
+ u64 sum_exec_runtime;
+ s64 fair_key;
+ s64 sum_wait_runtime, sum_sleep_runtime;
+ unsigned long wait_runtime_overruns, wait_runtime_underruns;
+};
+
struct task_struct {
volatile long state; /* -1 unrunnable, O runnable, >0 stopped */
struct thread_info *thread_info;
@@ -833,33 +855,15 @@ struct task_struct {
int oncpu;
#endif
#endif
- int load_weight; /* for niceness load balancing purposes */

int prio, static_prio, normal_prio;
-inton_rq;

struct list_head run_list;
- struct rb_node run_node;
+ struct sched_entity se;

unsigned short ioprio;

#ifdef CONFIG_BLK DEV _|IO_TRACE
unsigned int btrace_seq;

#endif

- I* CFS scheduling class statistics fields: */

- u64 wait_start_fair;

- u64 wait_start;

- U64 exec_start,

- ub4 sleep_start, sleep_start_fair;

- u64 block_start;

- u64 sleep_max;

- u64 block_max;

- U4 exec_max;

- u64 wait_max;

- S64 wait_runtime;

- u64 sum_exec_runtime;

- S64 fair_key;

- S64 sum_wait_runtime, sum_sleep_runtime;

- unsigned long wait_runtime_overruns, wait_runtime_underruns;

Page 4 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

unsigned long policy;
cpumask_t cpus_allowed;
Index: linux/kernel/exit.c

--- linux.orig/kernel/exit.c
+++ linux/kernel/exit.c
@@ -112,7 +112,7 @@ static void __exit_signal(struct task_st
sig->maj_flt += tsk->maj_flt;
sig->nvcsw += tsk->nvcsw;
sig->nivcsw += tsk->nivcsw;
- sig->sum_sched_runtime += tsk->sum_exec_runtime;
+ sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
sig = NULL; /* Marker for below. */

}

Index: linux/kernel/posix-cpu-timers.c

--- linux.orig/kernel/posix-cpu-timers.c
+++ linux/kernel/posix-cpu-timers.c
@@ -249,7 +249,7 @@ static int cpu_clock_sample_group_locked
cpu->sched = p->signal->sum_sched_runtime;
/* Add in each other live thread. */
while ((t = next_thread(t)) '=p) {
- cpu->sched += t->sum_exec_runtime;
+ cpu->sched += t->se.sum_exec_runtime;
}
cpu->sched += sched_ns(p);
break;
@@ -467,7 +467,7 @@ static void cleanup_timers(struct list_h
void posix_cpu_timers_exit(struct task_struct *tsk)
{
cleanup_timers(tsk->cpu_timers,
- tsk->utime, tsk->stime, tsk->sum_exec_runtime);
+ tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);

}

void posix_cpu_timers_exit_group(struct task_struct *tsk)
@@ -475,7 +475,7 @@ void posix_cpu_timers_exit_group(struct
cleanup_timers(tsk->signal->cpu_timers,
cputime_add(tsk->utime, tsk->signal->utime),
cputime_add(tsk->stime, tsk->signal->stime),
- tsk->sum_exec_runtime + tsk->signal->sum_sched_runtime);
+ tsk->se.sum_exec_runtime + tsk->signal->sum_sched_runtime);

}

@@ -536,7 +536,7 @@ static void process_timer_rebalance(stru
nsleft = max_t(unsigned long long, nsleft, 1);

Page 5 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

do{
if (likely(!(t->flags & PF_EXITING))) {
- ns =t->sum_exec_runtime + nsleft;
+ ns =t->se.sum_exec_runtime + nsleft;
if (t->it_sched_expires == 0 ||
t->it_sched_expires > ns) {
t->it_sched_expires = ns;
@@ -1004,7 +1004,7 @@ static void check_thread_timers(struct t
struct cpu_timer_list *t = list_entry(timers->next,
struct cpu_timer_list,
entry);
- if (I--maxfire || tsk->sum_exec_runtime < t->expires.sched) {
+ if (I--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
tsk->it_sched_expires = t->expires.sched;
break;
}
@@ -1049,7 +1049,7 @@ static void check_process_timers(struct
do{
utime = cputime_add(utime, t->utime);
stime = cputime_add(stime, t->stime);
- sum_sched_runtime += t->sum_exec_runtime;
+ sum_sched_runtime += t->se.sum_exec_runtime;
t = next_thread(t);
} while (t = tsk);
ptime = cputime_add(utime, stime);
@@ -1208,7 +1208,7 @@ static void check_process_timers(struct
t->it_virt_expires = ticks;

}

- sched = t->sum_exec_runtime + sched_left;
+ sched = t->se.sum_exec_runtime + sched_left;
if (sched_expires && (t->it_sched_expires == 0 ||
t->it_sched_expires > sched)) {
t->it_sched_expires = sched;
@@ -1300,7 +1300,7 @@ void run_posix_cpu_timers(struct task_st

if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
(tsk->it_sched_expires == 0 ||
- tsk->sum_exec_runtime < tsk->it_sched_expires))
+ tsk->se.sum_exec_runtime < tsk->it_sched_expires))
return;

#undef UNEXPIRED
Index: linux/kernel/sched.c

--- linux.orig/kernel/sched.c
+++ linux/kernel/sched.c
@@ -113,6 +113,23 @@ struct prio_array {

Page 6 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

struct list_head queue[MAX_RT_PRIO];
I3

+/* CFS-related fields in a runqueue */

+struct Irq {

+ unsigned long raw_weighted_load;

+ #define CPU_LOAD_IDX_MAX 5

+ unsigned long cpu_load[CPU_LOAD_IDX_MAX];

+ unsigned long nr_load_updates;

+

+ u64 fair_clock, delta_fair_clock;

+ u64 exec_clock, delta_exec_clock;

+ s64 wait_runtime;

+ unsigned long wait_runtime_overruns, wait_runtime_underruns;

+

+ struct rb_root tasks_timeline;

+ struct rb_node *rb_leftmost;

+ struct rb_node *rb_load_balance_curr;

+};

+

/*
* This is the main, per-CPU rungqueue data structure.
*

@@ -128,12 +145,9 @@ struct rq {
* remote CPUs use both these fields when doing load calculation.
*/
long nr_running;

- unsigned long raw_weighted_load;

- #define CPU_LOAD_IDX_MAX 5

- unsigned long cpu_load[CPU_LOAD_IDX_MAX];

+ struct Irq Irq;

u64 nr_switches;
- unsigned long nr_load_updates;

/*
* This is part of a global counter where only the total sum
@@ -149,10 +163,6 @@ struct rq {

u64 clock, prev_clock_raw;
s64 clock_max_delta;
- u64 fair_clock, delta_fair_clock;
- u64 exec_clock, delta_exec_clock;
- s64 wait_runtime;
- unsigned long wait_runtime_overruns, wait_runtime_underruns;

unsigned int clock_warps, clock_overflows;
unsigned int clock_unstable_events;

Page 7 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -163,10 +173,6 @@ struct rq {
int rt_load_balance_idx;
struct list_head *rt_load_balance _head, *rt_load_balance_curr;

- struct rb_root tasks_timeline;
- struct rb_node *rb_leftmost;
- struct rb_node *rb_load_balance_curr;

atomic_t nr_iowait;

#ifdef CONFIG_SMP

@@ -543,13 +549,13 @@ const int prio_to_weight[40] = {
static inline void

inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
{

- rg->raw_weighted_load += p->load_weight;

+ rg->Irg.raw_weighted_load += p->se.load_weight;

}

static inline void

dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
{

- rg->raw_weighted_load -= p->load_weight;

+ rg->Irg.raw_weighted_load -= p->se.load_weight;

}

static inline void inc_nr_running(struct task_struct *p, struct rg *rq)
@@ -575,22 +581,22 @@ static void activate_task(struct rq *rq,

static void set_load_weight(struct task_struct *p)

{

- task_rg(p)->wait_runtime -= p->wait_runtime;

- p->wait_runtime = 0;

+ task_rq(p)->Irg.wait_runtime -= p->se.wait_runtime;
+ p->se.wait_runtime = 0;

if (has_rt_policy(p)) {
- p->load_weight = prio_to_weight[0] * 2;
+ p->se.load_weight = prio_to_weight[0] * 2;
return;
}
/*
* SCHED_IDLEPRIO tasks get minimal weight:
*/
if (p->policy == SCHED_IDLEPRIO) {
- p->load_weight = 1;
+ p->se.load_weight = 1,
return;

Page 8 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

}

- p->load_weight = prio_to_weight[p->static_prio - MAX_RT_PRIQO];
+ p->se.load_weight = prio_to_weight[p->static_prio - MAX_RT_PRIQO];
}

static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
@@ -599,7 +605,7 @@ static void enqueue_task(struct rq *rq,

sched_info_queued(p);
p->sched_class->enqueue_task(rq, p, wakeup, now);
- p->on_rqg = 1;
+ p->se.on_rq = 1;

}

static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
@@ -607,7 +613,7 @@ static void dequeue_task(struct rq *rq,
u64 now = rqg_clock(rq);

p->sched_class->dequeue_task(rq, p, sleep, now);

- p->on_rqg = 0;

+ p->se.on_rq = 0;

}

/~k

@@ -695,7 +701,7 @@ inline int task _curr(const struct task_s
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)

{

- return cpu_rqg(cpu)->raw_weighted_load;
+ return cpu_rq(cpu)->Irg.raw_weighted_load,;

}

#ifdef CONFIG_SMP
@@ -712,18 +718,18 @@ void set_task cpu(struct task_struct *p,
u64 clock_offset, fair_clock_offset;

clock_offset = old_rg->clock - new_rqg->clock;
- fair_clock_offset = old_rg->fair_clock - new_rqg->fair_clock;
+ fair_clock_offset = old_rg->Irq.fair_clock - new_rg->Irq.fair_clock;

- if (p->wait_start)

- p->wait_start -= clock_offset;

- if (p->wait_start_fair)

- p->wait_start_fair -= fair_clock_offset;
- if (p->sleep_start)

- p->sleep_start -= clock_offset;

- if (p->block_start)

Page 9 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- p->block_start -= clock_offset;

- if (p->sleep_start_fair)

- p->sleep_start_fair -= fair_clock_offset;

+ if (p->se.wait_start)

+ p->se.wait_start -= clock_offset;

+ if (p->se.wait_start_fair)

+ p->se.wait_start_fair -= fair_clock_offset;
+ if (p->se.sleep_start)

+ p->se.sleep_start -= clock_offset;

+ if (p->se.block_start)

+ p->se.block_start -= clock_offset;

+ if (p->se.sleep_start_fair)

+ p->se.sleep_start_fair -= fair_clock_offset;

task_thread_info(p)->cpu = new_cpu;

@@ -751,7 +757,7 @@ migrate_task(struct task_struct *p, int
* |f the task is not on a runqueue (and not running), then
* it is sufficient to simply update the task's cpu field.
*/
- if (Ip->on_rq && 'task_running(rq, p)) {
+ if (Ip->se.on_rq && 'task_running(rq, p)) {
set_task_cpu(p, dest_cpu);
return O;
}
@@ -782,7 +788,7 @@ void wait_task_inactive(struct task_stru
repeat:
rq = task_rq_lock(p, &flags);
[* Must be off runqueue entirely, not preempted. */
- if (unlikely(p->on_rq || task_running(rq, p))) {
+ if (unlikely(p->se.on_rq || task_running(rq, p))) {
[* If it's preempted, we yield. It could be a while. */
preempted = !task_running(rq, p);
task _rg_unlock(rqg, &flags);
@@ -830,9 +836,9 @@ static inline unsigned long source_load(
struct rq *rq = cpu_rg(cpu);

if (type == 0)
- return rg->raw_weighted_load;
+ return rg->Irq.raw_weighted_load,;

- return min(rg->cpu_load[type-1], rg->raw_weighted_load);
+ return min(rg->Irq.cpu_load[type-1], rg->Irg.raw_weighted_load);

}

/~k
@@ -844,9 +850,9 @@ static inline unsigned long target_load(
struct rq *rq = cpu_rqg(cpu);

Page 10 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

if (type == 0)
- return rg->raw_weighted_load;
+ return rg->Irq.raw_weighted_load,;

- return max(rg->cpu_load[type-1], rg->raw_weighted_load);
+ return max(rg->Irq.cpu_load[type-1], rg->Irq.raw_weighted_load);

}

/~k

@@ -857,7 +863,7 @@ static inline unsigned long cpu_avg_load
struct rq *rq = cpu_rqg(cpu);
unsigned long n = rg->nr_running;

- return n ? rg->raw_weighted_load / n : SCHED_LOAD_SCALE;
+ return n ? rq->Irg.raw_weighted _load / n : SCHED _LOAD_SCALE;

}

/*

@@ -1078,7 +1084,7 @@ static int try_to_wake_up(struct task_st
if (!(old_state & state))
goto out;

- if (p->on_rq)
+ if (p->se.on_rq)
goto out_running;

cpu = task_cpu(p);
@@ -1133,11 +1139,11 @@ static int try_to_wake_up(struct task_st
* of the current CPU:
*/
if (sync)
- tl-= current->load_weight;
+ tl-=current->se.load_weight;

if ((tl <= load &&
tl + target_load(cpu, idx) <=tl_per_task) ||
- 100*(tl + p->load_weight) <= imbalance*load) {
+ 100*(tl + p->se.load_weight) <= imbalance*load) {
/*
* This domain has SD_WAKE_AFFINE and
* p is cache cold in this domain, and
@@ -1171,7 +1177,7 @@ out_set_cpu:
old_state = p->state;
if (!(old_state & state))
goto out;
- if (p->on_rq)
+ if (p->se.on_rq)

Page 11 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

goto out_running;

this_cpu = smp_processor_id();

@@ -1235,18 +1241,18 @@ static void task _running_tick(struct rq
*/

static void __sched_fork(struct task_struct *p)

{

- p->wait_start_fair = p->wait_start = p->exec_start = 0;

- p->sum_exec_runtime = 0;

+ p->se.wait_start_fair = p->se.wait_start = p->se.exec_start = 0;

+ p->se.sum_exec_runtime = 0;

- p->wait_runtime = 0;
+ p->se.wait_runtime = 0;

- p->sum_wait_runtime = p->sum_sleep_runtime = 0;

- p->sleep_start = p->sleep_start_fair = p->block_start = 0;

- p->sleep_max = p->block_max = p->exec_max = p->wait_max = 0;

- p->wait_runtime_overruns = p->wait_runtime_underruns = 0;

+ p->se.sum_wait_runtime = p->se.sum_sleep_runtime = 0;

+ p->se.sleep_start = p->se.sleep_start_fair = p->se.block_start = 0;

+ p->se.sleep_max = p->se.block_max = p->se.exec_max = p->se.wait_max = 0;
+ p->se.wait_runtime_overruns = p->se.wait_runtime_underruns = 0;

INIT_LIST_HEAD(&p->run_list);
- p->on_rq = 0;
+ p->se.on_rq = 0;
p->nr_switches = 0;

/*
@@ -1317,7 +1323,7 @@ void fastcall wake_up_new_task(struct ta
p->prio = effective_prio(p);

if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
- task_cpu(p) !=this_cpu || lcurrent->on_rq) {
+ task_cpu(p) !=this_cpu || lcurrent->se.on_rq) {
activate_task(rq, p, 0);
} else {
/*
@@ -1332,7 +1338,7 @@ void fastcall wake up_new_task(struct ta

void sched_dead(struct task_struct *p)

{
- WARN_ON_ONCE(p->on_rq);
+ WARN_ON_ONCE(p->se.on_rq);

}

/**

Page 12 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -1542,17 +1548,17 @@ static void update_load_fair(struct rq *
u64 fair_delta64, exec_delta64, tmp64;
unsigned int i, scale;

- this_rg->nr_load_updates++;

- if (/(sysctl_sched_features & 64)) {

- this_load = this_rg->raw_weighted_load;

+ this_rg->Irg.nr_load_updates++;

+ if (sysctl_sched_features & 64) {

+ this_load = this_rg->Irq.raw_weighted_load;
goto do_avg;

}

- fair_delta64 = this_rg->delta_fair_clock + 1,

- this_rg->delta_fair_clock = 0;

+ fair_delta64 = this_rqg->Irg.delta_fair_clock + 1;
+ this_rg->Irg.delta_fair_clock = 0;

- exec_delta64 = this_rg->delta_exec_clock + 1;

- this_rg->delta_exec_clock = 0;

+ exec_delta64 = this_rg->Irq.delta_exec_clock + 1;
+ this_rg->Irg.delta_exec_clock = 0;

if (fair_delta64 > (u64)LONG_MAX)
fair_delta64 = (u64)LONG_MAX;
@@ -1577,10 +1583,10 @@ do_avg:

[* scale is effectively 1 <<i now, and >> i divides by scale */

- old_load = this_rg->cpu_load][i];
+ old_load = this_rqg->Irg.cpu_load][i];
new_load = this_load;

- this_rg->cpu_load]i] = (old_load*(scale-1) + new_load) >> i;

+ this_rg->Irg.cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
}

}

@@ -1836,7 +1842,8 @@ next:
* skip a task if it will be the highest priority task (i.e. smallest
* prio value) on its new queue regardless of its load weight
*/
- skip_for_load = (p->load_weight >> 1) > rem_load_move + SCHED_LOAD_SCALE_FUZZ,
+ skip_for_load = (p->se.load_weight >> 1) > rem_load_move +
+ SCHED_LOAD_SCALE_FUZzz,
if (skip_for_load && p->prio < this_best_prio)
skip_for_load = Ibest_prio_seen && p->prio == best_prio;
if (skip_for_load ||

Page 13 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -1849,7 +1856,7 @@ next:

pull_task(busiest, p, this_rq, this_cpu);
pulled++;

-rem_load_move -= p->load_weight;

+ rem_load_move -= p->se.load_weight;

/*
* We only want to steal up to the prescribed number of tasks
@@ -1946,7 +1953,7 @@ find_busiest_group(struct sched_domain *

avg_load +=load;
sum_nr_running += rg->nr_running;
- sum_weighted_load += rg->raw_weighted_load;
+ sum_weighted_load += rg->Irg.raw_weighted_load;

}

/*
@@ -2178,11 +2185,12 @@ find_busiest_queue(struct sched_group *g

rq = cpu_rq(i);

- if (rg->nr_running == 1 && rg->raw_weighted_load > imbalance)
+ if (rg->nr_running == 1 &&
+ rg->Irg.raw_weighted_load > imbalance)

continue;

- if (rg->raw_weighted_load > max_load) {
- max_load = rg->raw_weighted_load;
+ if (rg->Irg.raw_weighted_load > max_load) {
+ max_load = rg->Irg.raw_weighted_load;
busiest =rq;
}

}
@@ -2607,9 +2615,9 @@ unsigned long long task _sched_runtime(st

struct rq *rq;

rq = task_rq_lock(p, &flags);
- NS = p->sum_exec_runtime;
+ ns = p->se.sum_exec_runtime;
if (rg->curr ==p) {
- delta_exec = rqg_clock(rq) - p->exec_start;
+ delta_exec =rq_clock(rq) - p->se.exec_start;
if ((s64)delta_exec > 0)
ns += delta_exec;
}
@@ -3299,7 +3307,7 @@ void rt_mutex_setprio(struct task_struct
rq = task_rq_lock(p, &flags);

Page 14 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

oldprio = p->prio;
-on_rq = p->on_rq;
+0n_rqg = p->se.on_rq;

if (on_rq)

dequeue_task(rq, p, 0);

@@ -3352,7 +3360,7 @@ void set_user_nice(struct task_struct *p
p->static_prio = NICE_TO_PRIO(nice);
goto out_unlock;
}
-on_rq = p->on_rq;
+0n_rqg = p->se.on_rq;
if (on_rq) {
dequeue_task(rq, p, 0);
dec_raw_weighted_load(rq, p);
@@ -3489,12 +3497,13 @@ static inline struct task_struct *find_p
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
{
- BUG_ON(p->on_rq);
+ BUG_ON(p->se.on_rq);

p->policy = policy;

switch (p->policy) {

case SCHED_NORMAL:

case SCHED_BATCH:
+ case SCHED_ISO:

case SCHED_IDLEPRIO:

p->sched_class = &fair_sched_class;

break;
@@ -3534,12 +3543,12 @@ recheck:

policy = oldpolicy = p->policy;

else if (policy '= SCHED_FIFO && policy = SCHED_RR &&

policy '= SCHED_NORMAL && policy = SCHED_BATCH &&

- policy '= SCHED_IDLEPRIO)
+ policy I= SCHED_ISO && policy = SCHED_IDLEPRIO)

return -EINVAL,

/*

* Valid priorities for SCHED_FIFO and SCHED_RR are

*1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
- * SCHED_BATCH and SCHED_IDLEPRIO is 0.
+ * SCHED_BATCH, SCHED_ISO and SCHED_IDLEPRIO is 0.

*/

if (param->sched_priority < O ||

(p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
@@ -3570,6 +3579,12 @@ recheck:
param->sched_priority > rlim_rtprio)

Page 15 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

return -EPERM,;
}
/*
* Like positive nice levels, dont allow tasks to
* move out of SCHED_IDLEPRIO either:
*/
if (p->policy == SCHED_IDLEPRIO && policy '= SCHED_IDLEPRIO)
return -EPERM,;

+ 4+ + + + +

[* can't change other user's priorities */
if ((current->euid !'= p->euid) &&
@@ -3597,7 +3612,7 @@ recheck:
spin_unlock_irgrestore(&p->pi_lock, flags);
goto recheck;
}
-on_rg = p->on_rq;
+0n_rq = p->se.on_rq;
if (on_rq)
deactivate_task(rq, p, 0);
oldprio = p->prio;
@@ -4093,6 +4108,7 @@ asmlinkage long sys_sched_get_priority_m
break;
case SCHED_NORMAL.:
case SCHED_BATCH:
+ case SCHED_ISO:
case SCHED_IDLEPRIO:
ret=0;
break;
@@ -4118,6 +4134,7 @@ asmlinkage long sys_sched_get_priority_m
break;
case SCHED_NORMAL:
case SCHED_BATCH:
+ case SCHED ISO:
case SCHED_IDLEPRIO:
ret =0;
}
@@ -4249,7 +4266,7 @@ void __cpuinit init_idle(struct task_str
unsigned long flags;

__sched_fork(idle);
- idle->exec_start = sched_clock();
+ idle->se.exec_start = sched_clock();

idle->prio = idle->normal_prio = MAX_PRIO;

idle->cpus_allowed = cpumask_of_cpu(cpu);
@@ -4352,7 +4369,7 @@ EXPORT_SYMBOL_GPL(set_cpus_allowed);
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)

{

Page 16 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

struct rq *rq_dest, *rq_src;
-intret=0;
+intret =0, on_rq;

if (unlikely(cpu_is_offline(dest_cpu)))
return ret;
@@ -4368,9 +4385,11 @@ static int __migrate_task(struct task_st
if ('cpu_isset(dest_cpu, p->cpus_allowed))
goto out;

- set_task_cpu(p, dest_cpu);

- if (p->on_rq) {

+0n_rq = p->se.on_rq;

+if (on_rq)
deactivate_task(rg_src, p, 0);

+ set_task_cpu(p, dest_cpu);

+if (on_rq) {
activate_task(rg_dest, p, 0);
check_preempt_curr(rq_dest, p);

}

@@ -5752,11 +5771,11 @@ void __init sched_init(void)
spin_lock_init(&rg->lock);
lockdep_set_class(&rg->lock, &rg->rq_lock key);
rg->nr_running = 0;

- rg->tasks_timeline = RB_ROOT;

- rg->clock = rqg->fair_clock = 1;

+ rg->Irg.tasks_timeline = RB_ROOT;

+ rg->clock = rg->Irqg.fair_clock = 1,

for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
- rg->cpu_load[j] = 0;
+ rg->Irq.cpu_loady[j] = O;
#ifdef CONFIG_SMP
rq->sd = NULL;
rq->active_balance = 0;
@@ -5836,15 +5855,15 @@ void normalize_rt_tasks(void)

read_lock_irg(&tasklist_lock);
do_each_thread(g, p) {

- p->fair_key = 0;

- p->wait_runtime = 0;

- p->wait_start_fair = 0;

- p->wait_start = 0;

- p->exec_start = 0;

- p->sleep_start = 0;

- p->sleep_start_fair = 0;

- p->block_start = 0;

- task_rqg(p)->fair_clock = 0;

Page 17 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

p->se.fair_key = 0;
p->se.wait_runtime = 0;
p->se.wait_start_fair = 0;
p->se.wait_start = 0O;
p->se.exec_start = 0;
p->se.sleep_start = 0;
p->se.sleep_start_fair = 0;
p->se.block_start = 0;
task_rq(p)->Irg.fair_clock = 0O;
task _rqg(p)->clock = 0;

+ 4+ + + A+ + o+

if (Irt_task(p)) {

@@ -5867,7 +5886,7 @@ void normalize_rt_tasks(void)
goto out_unlock;

#endif

- on_rq = p->on_rq;
+ 0on_rq = p->se.on_rq;
if (on_rq)
deactivate_task(task_rq(p), p, 0);
__setscheduler(rg, p, SCHED_NORMAL, 0);
Index: linux/kernel/sched_debug.c

--- linux.orig/kernel/sched_debug.c

+++ linux/kernel/sched_debug.c

@@ -40,19 +40,19 @@ print_task(struct seq_file *m, struct rq
SEQ_printf(m, "%15s %5d %15Ld %13Ld %13Ld %9Ld %5d "

"%15Ld %15Ld %15Ld %15Ld %15Ld\n",

p->comm, p->pid,

- (long long)p->fair_key,

- (long long)(p->fair_key - rq->fair_clock),

- (long long)p->wait_runtime,

+ (long long)p->se.fair_key,

+ (long long)(p->se.fair_key - rg->Irg.fair_clock),

+ (long long)p->se.wait_runtime,
(long long)p->nr_switches,
p->prio,

- (long long)p->sum_exec_runtime,

- (long long)p->sum_wait_runtime,

- (long long)p->sum_sleep_runtime,

- (long long)p->wait_runtime_overruns,

- (long long)p->wait_runtime_underruns);

+ (long long)p->se.sum_exec_runtime,

+ (long long)p->se.sum_wait_runtime,

+ (long long)p->se.sum_sleep_runtime,

+ (long long)p->se.wait_runtime_overruns,

+ (long long)p->se.wait_runtime_underruns);

}

Page 18 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-static void print_rg(struct seq_file *m, struct rq *rqg, u64 now)
+static void print_rg(struct seq_file *m, struct rq *rq, int rg_cpu, u64 now)

{

struct task_struct *g, *p;

@@ -70,7 +70,7 @@ static void print_rq(struct seq_file *m,
read_lock_irg(&tasklist_lock);

do_each_thread(g, p) {
- if (Ip->on_rq)
+ if (Ip->se.on_rq || task_cpu(p) '=rq_cpu)
continue;

print_task(m, rq, p, now);
@@ -87,10 +87,10 @@ static void print_rg_runtime_sum(struct
unsigned long flags;

spin_lock_irgsave(&rg->lock, flags);
- curr = first_fair(rq);
+ curr = first_fair(&rg->Irq);
while (curr) {
- p =rb_entry(curr, struct task_struct, run_node);
- wait_runtime_rqg_sum += p->wait_runtime;
+ p = rb_entry(curr, struct task_struct, se.run_node);
+ wait_runtime_rq_sum += p->se.wait_runtime;

curr = rb_next(curr);
}

@@ -109,9 +109,9 @@ static void print_cpu(struct seq_file *m
SEQ_printf(m, " .%-22s: %Ld\n", #X, (long long)(rg->x))

P(nr_running);
- P(raw_weighted_load);
+ P(Irg.raw_weighted_load);
P(nr_switches);
- P(nr_load_updates);
+ P(Irg.nr_load_updates);
P(nr_uninterruptible);
SEQ_printf(m, " .%-22s: %lu\n", "jiffies", jiffies);
P(next_balance);
@@ -122,22 +122,22 @@ static void print_cpu(struct seq_file *m
P(clock_overflows);
P(clock_unstable_events);
P(clock_max_delta);
- P(fair_clock);
- P(delta_fair_clock);
- P(exec_clock);

Page 19 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- P(delta_exec_clock);

- P(wait_runtime);

- P(wait_runtime_overruns);

- P(wait_runtime_underruns);

- P(cpu_load[0)]);

- P(cpu_load[1));

- P(cpu_load[2));

- P(cpu_load[3]);

- P(cpu_load[4]);

+ P(Irq.fair_clock);

+ P(Irg.delta_fair_clock);

+ P(Irg.exec_clock);

+ P(Irg.delta_exec_clock);

+ P(Irg.wait_runtime);

+ P(Irg.wait_runtime_overruns);

+ P(Irg.wait_runtime_underruns);

+ P(Irg.cpu_load[0]);

+ P(Irg.cpu_load[1]);

+ P(Irg.cpu_load[2]);

+ P(Irg.cpu_load[3]);

+ P(Irg.cpu_load[4]);

#undef P
print_rg_runtime_sum(m, rq);

- print_rg(m, rg, now);
+ print_rq(m, rq, cpu, NOW);

}

static int sched_debug_show(struct seq_file *m, void *v)
@@ -205,21 +205,21 @@ void proc_sched_show_task(struct task_st
#define P(F) \

SEQ_printf(m, "%-25s:%20Ld\n", #F, (long long)p->F)

- P(wait_start);

- P(wait_start_fair);

- P(exec_start);

- P(sleep_start);

- P(sleep_start_fair);

- P(block_start);

- P(sleep_max);

- P(block_max);

- P(exec_max);

- P(wait_max);

- P(wait_runtime);

- P(wait_runtime_overruns);
- P(wait_runtime_underruns);
- P(sum_exec_runtime);

- P(load_weight);

Page 20 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ P(se.wait_start);
+ P(se.wait_start_fair);
+ P(se.exec_start);
+ P(se.sleep_start);
+ P(se.sleep_start_fair);
+ P(se.block_start);
+ P(se.sleep_max);
+ P(se.block_max);
+ P(se.exec_max);
+ P(se.wait_max);
+ P(se.wait_runtime);
+ P(se.wait_runtime_overruns);
+ P(se.wait_runtime_underruns);
+ P(se.sum_exec_runtime);
+ P(se.load_weight);
P(policy);
P(prio);
#undef P
@@ -235,7 +235,7 @@ void proc_sched_show_task(struct task st

void proc_sched_set_task(struct task_struct *p)

{

- p->sleep_max = p->block_max = p->exec_max = p->wait_max = 0;

- p->wait_runtime_overruns = p->wait_runtime_underruns = 0;

- p->sum_exec_runtime = 0;

+ p->se.sleep_max = p->se.block_max = p->se.exec_max = p->se.wait_max = 0;
+ p->se.wait_runtime_overruns = p->se.wait_runtime_underruns = 0;

+ p->se.sum_exec_runtime = 0;

}

Index: linux/kernel/sched_fair.c

--- linux.orig/kernel/sched_fair.c

+++ linux/kernel/sched_fair.c

@@ -38,22 +38,57 @@ unsigned int sysctl_sched_batch_wakeup_g
*/

unsigned int sysctl_sched_runtime_limit __read_mostly;

-unsigned int sysctl_sched features read mostly=1|2|4|8|0]0;
+unsigned int sysctl_sched_features __read mostly=0]2|4]8]0]0;

extern struct sched_class fair_sched_class;

+J**/

+/* BEGIN : CFS operations on generic schedulable entities */

+J**/
+
+static inline struct rq *Irg_rq(struct Irg *Irq)

H

Page 21 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ return container_of(lrq, struct rq, Irg);

+}

+

+static inline struct sched_entity *Irg_curr(struct Irq *Irq)

gl

+ struct rq *rq = Irg_rq(lrq);

+ struct sched_entity *se = NULL;

+

+if (rg->curr->sched_class == &fair_sched_class)

+ se = &rg->curr->se;

+

+ return se;

+}

+

+static long Irg_nr_running(struct Irq *Irq)

gl

+ struct rq *rq = Irg_rq(Irq);

+

+ return rg->nr_running;

+}

+

+#define entity _is_task(se) 1

+

+static inline struct task_struct *entity _to_task(struct sched_entity *se)

gl

+ return container_of(se, struct task_struct, se);

+}

+

+
/**/
[* Scheduling class tree data structure manipulation methods:
*/

/*
- * Enqueue a task into the rb-tree:
+ * Enqueue a entity into the rb-tree:
*/
-static inline void __enqueue_task_fair(struct rq *rq, struct task_struct *p)
+static inline void __enqueue_entity(struct Irq *Irg, struct sched_entity *p)
{
- struct rb_node **link = &rg->tasks_timeline.rb_node;
+ struct rb_node **link = &Irg->tasks_timeline.rb_node;
struct rb_node *parent = NULL;
- struct task_struct *entry;
+ struct sched_entity *entry;
s64 key = p->fair_key;
int leftmost = 1;

Page 22 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -62,7 +97,7 @@ static inline void __enqueue_task fair(s
*/
while (*link) {
parent = *link;
- entry = rb_entry(parent, struct task_struct, run_node);
+ entry = rb_entry(parent, struct sched_entity, run_node);
/~k
* We dont care about collisions. Nodes with
* the same key stay together.
@@ -80,31 +115,31 @@ static inline void __enqueue_task_fair(s
* used):
*/
if (leftmost)
- rg->rb_leftmost = &p->run_node;
+ Irg->rb_leftmost = &p->run_node;

rb_link_node(&p->run_node, parent, link);
- rb_insert_color(&p->run_node, &rg->tasks_timeline);
+ rb_insert_color(&p->run_node, &lrg->tasks_timeline);

}

-static inline void __dequeue_task_fair(struct rq *rq, struct task_struct *p)
+static inline void ___dequeue_entity(struct Irq *Irq, struct sched_entity *p)
{

- if (rg->rb_leftmost == &p->run_node)

- rg->rb_leftmost = NULL,;

- rb_erase(&p->run_node, &rg->tasks_timeline);

+ if (Irg->rb_leftmost == &p->run_node)

+ Irg->rb_leftmost = NULL;

+ rb_erase(&p->run_node, &lrg->tasks_timeline);

}

-static inline struct rb_node * first_fair(struct rq *rq)
+static inline struct rb_node * first_fair(struct Irq *Irq)
{
- if (rg->rb_leftmost)
- return rg->rb_leftmost;
+ if (Irg->rb_leftmost)
+ return Irg->rb_leftmost;
[* Cache the value returned by rb_first() */
- rg->rb_leftmost = rb_first(&rg->tasks_timeline);
- return rg->rb_leftmost;
+ Irg->rb_leftmost = rb_first(&Irg->tasks_timeline);
+ return Irg->rb_leftmost;

}

-static struct task_struct * __ pick_next_task_fair(struct rq *rq)
+static struct sched_entity * __pick_next_entity(struct Irg *Irq)

Page 23 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

{

- return rb_entry(first_fair(rg), struct task_struct, run_node);
+ return rb_entry(first_fair(Irg), struct sched_entity, run_node);

}

/**/

@@ -115,8 +150,8 @@ static struct task_struct * __ pick_next_
* We rescale the rescheduling granularity of tasks according to their
* nice level, but only linearly, not exponentially:
*/
-Static u64
-niced_granularity(struct task_struct *curr, unsigned long granularity)
+static s64
+niced_granularity(struct sched_entity *curr, unsigned long granularity)
{
/*
* Negative nice levels get the same granularity as nice-0:
@@ -130,7 +165,7 @@ niced_granularity(struct task_struct *cu
return curr->load_weight * (s64)(granularity / NICE_0_LOAD);

}

-static void limit_wait_runtime(struct rq *rq, struct task_struct *p)
+static void limit_wait_runtime(struct Irg *Irq, struct sched_entity *p)

{

s64 limit = sysctl_sched_runtime_limit;

@@ -141,27 +176,28 @@ static void limit_wait_runtime(struct rq
if (p->wait_runtime > limit) {
p->wait_runtime = limit;
p->walit_runtime_overruns++;

- rg->wait_runtime_overruns++;

+ Irg->wait_runtime_overruns++;
}
if (p->wait_runtime < -limit) {
p->wait_runtime = -limit;
p->wait_runtime_underruns++;

- rg->wait_runtime_underruns++;

+ Irg->wait_runtime_underruns++;

}
}

-static void __add_wait_runtime(struct rq *rq, struct task_struct *p, s64 delta)
+static void
+__add_wait_runtime(struct Irq *Irq, struct sched_entity *p, s64 delta)
{
p->wait_runtime += delta;
p->sum_wait_runtime += delta;
- limit_wait_runtime(rq, p);

Page 24 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ limit_wait_runtime(Irq, p);

}

-static void add_wait_runtime(struct rq *rq, struct task_struct *p, s64 delta)
+static void add_wait_runtime(struct Irq *Irg, struct sched_entity *p, s64 delta)
{

- rg->wait_runtime -= p->wait_runtime;

- __add_wait_runtime(rq, p, delta);

- rg->wait_runtime += p->wait_runtime;

+ Irg->wait_runtime -= p->wait_runtime;

+ __add_wait_runtime(Irqg, p, delta);

+ Irg->wait_runtime += p->wait_runtime;

}

static s64 div64_s(s64 divident, unsigned long divisor)

@@ -183,13 +219,15 @@ static s64 div64_s(s64 divident, unsigne
* Update the current task's runtime statistics. Skip current tasks that
* are not in our scheduling class.

*/

-static inline void update_curr(struct rg *rq, u64 now)

+static inline void update_curr(struct Irg *Irq, u64 now)

{

- unsigned long load = rg->raw_weighted_load;

+ unsigned long load = Irg->raw_weighted_load;
u6b4 delta_exec, delta_fair, delta_mine;

- struct task_struct *curr = rg->curr;

+ struct sched_entity *curr = Irq_curr(Irq);

+ struct rq *rq = Irq_rq(lrq);

+ struct task_struct *curtask = rg->curr;

- if (curr->sched_class != &fair_sched_class || curr == rg->idle || 'load)
+ if ('curr || curtask == rg->idle || 'load)

return;

/*

* Get the amount of time the current task was running
@@ -203,29 +241,29 @@ static inline void update_curr(struct rq

curr->sum_exec_runtime += delta_exec;
curr->exec_start = now;

- rg->exec_clock += delta_exec;

+ Irg->exec_clock += delta_exec;

delta_fair = delta_exec * NICE_0O_LOAD;
delta_fair +=load >> 1; /* rounding */
do_div(delta_fair, load);

[* Load-balancing accounting. */
- rg->delta_fair_clock += delta_fair;

Page 25 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- rg->delta_exec_clock += delta_exec;
+ Irg->delta_fair_clock += delta_fair;
+ Irg->delta_exec_clock += delta_exec;

/*
* Task already marked for preemption, do not burden
* it with the cost of not having left the CPU yet:
*/
if (unlikely(sysctl_sched_features & 1))
- if (unlikely(test_tsk_thread_flag(curr, TIF_NEED_RESCHED)))
+ if (unlikely(test_tsk_thread_flag(curtask, TIF_NEED_RESCHED)))
return;

delta_mine = delta_exec * curr->load_weight;
delta_mine +=load >> 1; /* rounding */
do_div(delta_mine, load);

- rg->fair_clock += delta_fair;
+ Irg->fair_clock += delta_fair;
/*
* We executed delta_exec amount of time on the CPU,
* but we were only entitled to delta_mine amount of
@@ -233,13 +271,13 @@ static inline void update_curr(struct rq
* the two values are equal)
* [Note: delta_mine - delta_exec is negative]:
*/
- add_wait_runtime(rq, curr, delta_mine - delta_exec);
+ add_wait_runtime(Irq, curr, delta_mine - delta_exec);

}

static inline void
-update_stats_wait_start(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_wait_start(struct Irq *Irq, struct sched_entity *p, u64 now)
{
- p->wait_start_fair = rq->fair_clock;
+ p->wait_start_fair = Irq->fair_clock;

p->wait_start = now;

}

@@ -247,7 +285,7 @@ update_stats_wait_start(struct rq *rq, s
* Task is being enqueued - update stats:
*/
static inline void
-update_stats_enqueue(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_enqueue(struct Irq *Irg, struct sched_entity *p, u64 now)

{
s64 key;

Page 26 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -255,12 +293,12 @@ update_stats_enqueue(struct rq *rq, stru
* Are we enqueueing a waiting task? (for current tasks
* a dequeue/enqueue event is a NOP)
*

- if (p '=rg->curr)

- update_stats wait_start(rg, p, now);

+if (p '=Irg_curr(Irq))

+ update_stats_wait_start(Irg, p, now);
/*
* Update the key:
*/

- key = rg->fair_clock;

+ key = Irg->fair_clock;

/*
* Optimize the common nice 0 case:
@@ -269,9 +307,11 @@ update_stats_enqueue(struct rq *rq, stru
key -= p->wait_runtime;
else {
if (p->wait_runtime < 0)
- key -= div64_s(p->wait_runtime * NICE_O_LOAD, p->load_weight);
+ key -=dive4_s(p->wait_runtime * NICE_O0_LOAD,
+ p->load_weight);
else
- key -=div64_s(p->wait_runtime * p->load_weight, NICE_O_LOAD);
+ key -=div64_s(p->wait_runtime * p->load_weight,
+ NICE_O_LOAD);
}

p->fair_key = key;
@@ -281,7 +321,7 @@ update_stats_enqueue(struct rq *rq, stru
* Note: must be called with a freshly updated rg->fair_clock.
*/
static inline void
-update_stats_wait_end(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_wait_end(struct Irq *Irq, struct sched_entity *p, u64 now)

{

s64 delta_fair, delta_wait;

@@ -290,12 +330,12 @@ update_stats_wait_end(struct rq *rq, str
p->wait_max = delta_wait;

if (p->wait_start_fair) {
- delta_fair = rg->fair_clock - p->wait_start_fair;
+ delta_fair = Irg->fair_clock - p->wait_start_fair;

if (unlikely(p->load_weight = NICE_O_LOAD))
delta_fair = dive4_s(delta_fair * p->load_weight,

Page 27 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

NICE_O_LOAD);
- add_wait_runtime(rq, p, delta_fair);
+ add_wait_runtime(lrq, p, delta_fair);

}

p->wait_start_fair = 0;
@@ -303,22 +343,22 @@ update_stats_wait_end(struct rq *rq, str
}

static inline void
-update_stats_dequeue(struct rq *rq, struct task_struct *p, u64 now)
+update_stats_dequeue(struct Irq *Irg, struct sched_entity *p, u64 now)
{
- update_curr(rg, now);
+ update_curr(Irg, now);
/~k
* Mark the end of the wait period if dequeueing a
* waiting task:
*/
- if (p !=rg->curr)
- update_stats_wait_end(rq, p, now);
+if (p = Irg_curr(Irq))
+ update_stats_wait_end(Irg, p, now);

}

/~k
* We are picking a new current task - update its stats:
*/
static inline void
-update_stats_curr_start(struct rq *rq, struct task_struct *p, ué4 now)
+update_stats_curr_start(struct Irq *Irq, struct sched_entity *p, u64 now)
{
/*
* We are starting a new run period:
@@ -330,7 +370,7 @@ update_stats_curr_start(struct rq *rq, s
* We are descheduling a task - update its stats:
*/
static inline void
-update_stats_curr_end(struct rq *rq, struct task_struct *p, ué4 now)
+update_stats_curr_end(struct Irq *Irg, struct sched_entity *p, u64 now)
{
p->exec_start = 0;
}
@@ -345,50 +385,53 @@ update_stats_curr_end(struct rq *rq, str
* manner we move the fair clock back by a proportional
* amount of the new wait_runtime this task adds to the pool.
*/
-static void distribute_fair_add(struct rq *rq, s64 delta)

Page 28 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+static void distribute_fair_add(struct Irg *Irq, s64 delta)
{
- struct task_struct *curr = rq->curr;
+ struct sched_entity *curr = Irq_curr(Irq);
s64 delta_fair = 0;

if (!(sysctl_sched_features & 2))
return;

- if (rg->nr_running) {
- delta_fair = dive4_s(delta, rg->nr_running);
+if (Irg_nr_running(Irq)) {
+ delta_fair = div64_s(delta, Irg_nr_running(lrq));
/*
* The currently running task's next wait_runtime value does
* not depend on the fair_clock, so fix it up explicitly:
*/
- if (curr->sched_class == &fair_sched_class)
- add_wait_runtime(rq, curr, -delta_fair);
+ if (curr)
+ add_wait_runtime(lrq, curr, -delta_fair);
}
- rg->fair_clock -= delta_fair;
+ Irg->fair_clock -= delta_fair;

}

/**/

[* Scheduling class queueing methods:
*/

-static void enqueue_sleeper(struct rq *rq, struct task_struct *p)
+static void enqueue_sleeper(struct Irq *Irg, struct sched_entity *p)
{
- unsigned long load = rg->raw_weighted_load;
+ unsigned long load = Irg->raw_weighted_load;

s64 delta_fair, prev_runtime;
+ struct task_struct *tsk = entity_to_task(p);

- if (p->policy == SCHED_BATCH || !(sysctl_sched_features & 4))
+ if ((entity_is_task(p) && tsk->policy == SCHED_BATCH) ||
+ I(sysctl_sched_features & 4))

goto out;

- delta_fair = rq->fair_clock - p->sleep_start_fair;
+ delta_fair = Irg->fair_clock - p->sleep_start_fair;

/*
* Fix up delta_fair with the effect of us running

Page 29 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

* during the whole sleep period:
*/
if (!(sysctl_sched_features & 32))
- delta_fair = dive4_s(delta_fair * load, load + p->load_weight);
+ delta_fair = div64_s(delta_fair * load,
+ load + p->load_weight);
delta_fair = dive4_s(delta_fair * p->load_weight, NICE_0_LOAD);

prev_runtime = p->wait_runtime;

- __add_wait_runtime(rq, p, delta_fair);

+ __add_wait_runtime(Irqg, p, delta_fair);
delta_fair = p->wait_runtime - prev_runtime;

/*
@@ -396,28 +439,23 @@ static void enqueue_sleeper(struct rq *r
* amount of the new wait_runtime this task adds to
* the 'pool':
*/
- distribute_fair_add(rq, delta_fair);
+ distribute_fair_add(lIrq, delta_fair);

out:
- rg->wait_runtime += p->wait_runtime;
+ Irg->wait_runtime += p->wait_runtime;

p->sleep_start_fair = 0;

}

-[*

- * The enqueue_task method is called before nr_running is

- * increased. Here we update the fair scheduling stats and

- * then put the task into the rbtree:

- */

static void

-enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
+enqueue_entity(struct Irq *Irg, struct sched_entity *p, int wakeup, u64 now)

{

u64 delta = 0;

/*
* Update the fair clock.
*/

- update_curr(rg, now);
+ update_curr(Irg, now);

if (wakeup) {
if (p->sleep_start) {
@@ -443,10 +481,152 @@ enqueue_task fair(struct rq *rq, struct

Page 30 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

p->sum_sleep_runtime += delta;

if (p->sleep_start_fair)
- enqueue_sleeper(rq, p);
+ enqueue_sleeper(Irg, p);
+}
+ update_stats_enqueue(lrg, p, now);
+__enqueue_entity(Irq, p);
+}
+
+static void
+dequeue_entity(struct Irq *Irq, struct sched_entity *p, int sleep, u64 now)
gl
+ update_stats_dequeue(lrg, p, now);
+ if (sleep) {
+ if (entity_is_task(p)) {

struct task_struct *tsk = entity_to_task(p);

+
+
+ if (tsk->state & TASK_INTERRUPTIBLE)

+ p->sleep_start = now;

+ if (tsk->state & TASK_UNINTERRUPTIBLE)

+ p->block_start = now;

+}

+ p->sleep_start_fair = Irg->fair_clock;

+ Irg->wait_runtime -= p->wait_runtime;

+}

+ __dequeue_entity(Irq, p);

+}

+

+/*

+ * Preempt the current task with a newly woken task if needed:

+ */

+static inline void

+_check_preempt_curr_fair(struct Irq *Irg, struct sched_entity *p,
+ struct sched_entity *curr, unsigned long granularity)

gl

+5S64 __ delta = curr->fair_key - p->fair_key;

+

+ [*

+ * Take scheduling granularity into account - do not

+ * preempt the current task unless the best task has

+ *alarger than sched_granularity fairness advantage:

+ */

+ if (__delta > niced_granularity(curr, granularity))

+ resched_task(Irg_rq(Irg)->curr);

+}

+

+static struct sched_entity * pick_next_entity(struct Irq *Irq, u64 now)

Page 31 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

gl

+ struct sched_entity *p = pick_next_entity(Irg);

+

+ [*

+ * Any task has to be enqueued before it get to execute on
*a CPU. So account for the time it spent waiting on the

* runqueue. (note, here we rely on pick_next_task() having
* done a put_prev_task_fair() shortly before this, which

* updated rg->fair_clock - used by update_stats_wait_end())
+ */

+ update_stats_wait_end(Irqg, p, now);

+ update_stats_curr_start(Irq, p, now);

+

+ return p;

+}

+

+static void put_prev_entity(struct Irq *Irg, struct sched_entity *prev, u64 now)
gl

+ [*

+ * If the task is still waiting for the CPU (it just got

+ * preempted), update its position within the tree and

+ * start the wait period:

+ */

+ if ((sysctl_sched_features & 16) && entity _is_task(prev)) {
+ struct task_struct *prevtask = entity_to_task(prev);

+ 4+ + +

if (prev->on_rq &&
test_tsk_thread_flag(prevtask, TIF_NEED_ RESCHED)) {

dequeue_entity(Irg, prev, 0, now);
prev->on_rq = 0;

enqueue_entity(Irg, prev, 0, now);
prev->on_rq = 1,

+ }else

+ update_curr(Irg, now);

+}else {

+ update_curr(Irg, now);

+}

+

+ update_stats_curr_end(lrg, prev, now);
+

+ if (prev->on_rq)

+ update_stats_wait_start(Irq, prev, now);
+}

+

+static void entity _tick(struct Irq *Irg, struct sched_entity *curr)
+H

+ struct sched_entity *next;

+ 4+ + + + + + o+

Page 32 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ struct rq *rq = Irg_rq(Irq);

+ u64 now = __ rq_clock(rq);

+

+ [*

+ * Dequeue and engueue the task to update its
+ * position within the tree:

+ */

+ dequeue_entity(Irq, curr, 0, now);

+ curr->on_rq = 0;

+ enqueue_entity(Irqg, curr, 0, now);

+ curr->on_rqg = 1;

+

+ [*

+ * Reschedule if another task tops the current one.
+ */

+ next = __ pick_next_entity(Irq);

+ if (next == curr)

+ return;

+

+ if (entity_is_task(curr)) {

+ struct task_struct *curtask = entity _to_task(curr),
*nexttask = entity to_task(next);

if ((curtask == rg->idle) || (rt_prio(nexttask->prio) &&
(nexttask->prio < curtask->prio))) {

resched_task(curtask);

return;

}
}
- update_stats_enqueue(rqg, p, now);
- __enqueue_task_fair(rq, p);
+ __ check_preempt_curr_fair(Irg, next, curr, sysctl_sched_granularity);
+}
+
+

+/**/

+/* BEGIN : CFS operations on tasks */

+/**/

+ 4+ + + + + +

+
+static inline struct Irg *task_Irq(struct task_struct *p)

gl

+ return &task_rq(p)->Irq;

+}

+

+/*

+ * The enqueue_task method is called before nr_running is
+ * increased. Here we update the fair scheduling stats and
+ * then put the task into the rbtree:

Page 33 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ */

+static void

+enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
+

+ struct Irq *Irq = task_Irq(p);

+ struct sched_entity *se = &p->se;

+

+ enqueue_entity(Irq, se, wakeup, now);

}

/*

@@ -457,16 +637,10 @@ enqueue_task fair(struct rq *rq, struct
static void

dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep, u64 now)
{

- update_stats_dequeue(rq, p, now);

- if (sleep) {

- if (p->state & TASK_INTERRUPTIBLE)

p->sleep_start = now;

if (p->state & TASK_UNINTERRUPTIBLE)

p->block_start = now;

p->sleep_start_fair = rq->fair_clock;

rq->wait_runtime -= p->wait_runtime;

-}

- __dequeue_task_fair(rq, p);

+ struct Irq *Irq = task_Irq(p);

+ struct sched_entity *se = &p->se;

+
+ dequeue_entity(Irq, se, sleep, now);
}
/*
@@ -479,16 +653,18 @@ yield_task_fair(struct rq *rq, struct ta
{
struct task_struct *p_next;
u64 now;

+ struct Irq *Irq = task_Irq(p);
+ struct sched_entity *se = &p->se;

now = __ rg_clock(rq);
/*
* Dequeue and enqueue the task to update its
* position within the tree:
*/
- dequeue_task_fair(rq, p, 0, now);
- p->on_rq = 0;
- enqueue_task_fair(rq, p, 0, now);
- p->on_rq =1,

Page 34 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ dequeue_entity(Irq, se, 0, now);
+ se->on_rq = 0;
+ enqueue_entity(Irq, se, 0, now);
+se->on_rq =1,

/*
* yield-to support: if we are on the same runqueue then
@@ -496,39 +672,23 @@ yield_task_fair(struct rq *rq, struct ta
*/
if (p_to && rq == task_rq(p_to) &&
p_to->sched_class == &fair_sched_class
- && p->wait_runtime > 0) {
+ && p->se.wait_runtime > 0) {

- s64 delta = p->wait_runtime >> 1;
+ s64 delta = p->se.wait_runtime >> 1;

- __add_wait_runtime(rq, p_to, delta);

- __add_wait_runtime(rq, p, -delta);

+ _add_wait_runtime(lrg, &p_to->se, delta);
+ __add_wait_runtime(lrg, &p->se, -delta);

}

/*
* Reschedule if another task tops the current one.
*/

- p_next = __ pick_next_task_fair(rq);

+ se = __pick_next_entity(Irq);

+ p_next = entity_to_task(se);

if (p_next != p)
resched_task(p):
}
_/*

- * Preempt the current task with a newly woken task if needed:
- */

-static inline void

-__check_preempt_curr_fair(struct rq *rq, struct task_struct *p,
- struct task_struct *curr, unsigned long granularity)

-{

-s64 _ delta = curr->fair_key - p->fair_key;

e

- * Take scheduling granularity into account - do not

- * preempt the current task unless the best task has

- *alarger than sched_granularity fairness advantage:

- %/

if (__delta > niced_granularity(curr, granularity))

Page 35 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- resched_task(curr);

-}

/*

* Preempt the current task with a newly woken task if needed:
@@ -536,12 +696,13 @@ ___check _preempt_curr_fair(struct rq *rq,
static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
{

struct task_struct *curr = rg->curr;
+ struct Irg *Irg = task_Irg(curr);

unsigned long granularity;

if ((curr ==rg->idle) || rt_prio(p->prio)) {
if (sysctl_sched_features & 8) {
if (rt_prio(p->prio))
- update_curr(rqg, rg_clock(rq));
+ update_curr(Irg, rg_clock(rq));
}
resched_task(curr);
} else {
@@ -552,25 +713,18 @@ static void check_preempt_curr_fair(stru
if (unlikely(p->policy == SCHED_BATCH))
granularity = sysctl_sched_batch_wakeup_granularity;

- __check_preempt_curr_fair(rg, p, curr, granularity);
+ _ check_preempt_curr_fair(Irq, &p->se, &curr->se, granularity);

}
}
static struct task_struct * pick_next_task_fair(struct rq *rq, u64 now)
{
- struct task_struct *p = __ pick_next_task_fair(rq);

+ struct Irq *Irq = &rg->Irq;
+ struct sched_entity *se;

e
- * Any task has to be enqueued before it get to execute on

- *a CPU. So account for the time it spent waiting on the

* runqueue. (note, here we rely on pick_next_task() having
* done a put_prev_task_fair() shortly before this, which

- * updated rg->fair_clock - used by update_stats_wait_end())
- %

- update_stats_wait_end(rg, p, now);

- update_stats_curr_start(rq, p, now);

+ se = pick_next_entity(Irg, now);

- return p;
+ return entity_to_task(se);

Page 36 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

}

/*
@@ -578,32 +732,13 @@ static struct task_struct * pick_next_ta
*/
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, u64 now)
{
+ struct Irq *Irq = task_Irg(prev);
+ struct sched_entity *se = &prev->se;
+
if (prev == rg->idle)
return;

e
- * If the task is still waiting for the CPU (it just got
- * preempted), update its position within the tree and
* start the wait period:
.y
if (sysctl_sched_features & 16) {
if (prev->on_rq &&
test_tsk_thread_flag(prev, TIF_NEED RESCHED)) {

dequeue_task_fair(rqg, prev, 0, now);
prev->on_rq = 0;
enqueue_task_fair(rqg, prev, 0, now);
prev->on_rqg = 1,

} else

update_curr(rg, now);

- }else {

- update_curr(rg, now);

-}

- update_stats_curr_end(rqg, prev, now);
- if (prev->on_rq)

- update_stats_wait_start(rqg, prev, now);
+ put_prev_entity(Irq, se, now);

}

/**/

@@ -625,20 +760,20 @@ __load_balance_iterator(struct rq *rq, s
if ('curr)
return NULL;

- p = rb_entry(curr, struct task_struct, run_node);

- rg->rb_load_balance_curr = rb_next(curr);

+ p = rb_entry(curr, struct task_struct, se.run_node);
+ rg->Irq.rb_load_balance_curr = rb_next(curr);

Page 37 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

return p;

}

static struct task_struct * load_balance_start_fair(struct rq *rq)
{

- return __load_balance_iterator(rq, first_fair(rq));

+ return __load_balance_iterator(rq, first_fair(&rg->Irq));

}

static struct task_struct * load_balance_next_fair(struct rq *rq)

{

- return __load_balance_iterator(rq, rg->rb_load_balance_curr);

+ return __load_balance_iterator(rq, rg->Irq.rb_load_balance_curr);

}

/*

@@ -646,31 +781,10 @@ static struct task_struct * load_balance
*/

static void task_tick_fair(struct rg *rq, struct task_struct *curr)
{

- struct task_struct *next;

- u64 now = __ rq_clock(rq);

e

- * Dequeue and enqueue the task to update its

* position within the tree:

- %

- dequeue_task_fair(rq, curr, 0, now);

- curr->on_rqg = 0;

- enqueue_task_fair(rq, curr, 0, now);

- curr->on_rq = 1;

+ struct Irq *Irq = task_Irg(curr);

+ struct sched_entity *se = &curr->se;

- Jx
- * Reschedule if another task tops the current one.
- %/

-next = _ pick_next_task_fair(rqg);
- if (next == curr)
- return;

- if ((curr == rg->idle) || (rt_prio(next->prio) &&
(next->prio < curr->prio)))
resched_task(curr);
- else
__check_preempt_curr_fair(rg, next, curr,
sysctl_sched_granularity);

Page 38 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ entity_tick(Irg, se);
}

/*
@@ -682,29 +796,32 @@ static void task_tick fair(struct rq *rq
*/
static void task_new_fair(struct rq *rq, struct task_struct *p)
{
+ struct Irq *Irq = task_Irq(p);
+ struct sched_entity *se = &p->se;
+
sched_info_queued(p);
- update_stats_enqueue(rq, p, rq_clock(rq));
+ update_stats_enqueue(lrg, se, rg_clock(rq));
/*
* Child runs first: we let it run before the parent
* until it reschedules once. We set up the key so that
* it will preempt the parent:
*/
- p->fair_key = current->fair_key - niced_granularity(rg->curr,
+ p->se.fair_key = current->se.fair_key - niced_granularity(&rg->curr->se,
sysctl_sched_granularity) - 1;
/*
* The first wait is dominated by the child-runs-first logic,
* so do not credit it with that waiting time yet:
*/
- p->wait_start_fair = 0;
+ p->se.wait_start_fair = 0;

/*
* The statistical average of wait_runtime is about
* -granularity/2, so initialize the task with that:
*/
-/l p->wait_runtime = -(s64)(sysctl_sched_granularity / 2);
+// p->se.wait_runtime = -(s64)(sysctl_sched_granularity / 2);

- __enqueue_task_fair(rq, p);

-p->on_rq =1,

+ __enqueue_entity(Irq, se);

+ p->se.on_rq = 1;
inc_nr_running(p, rq);

}

Index: linux/kernel/sched _rt.c

--- linux.orig/kernel/sched_rt.c
+++ linux/kernel/sched_rt.c
@@ -15,14 +15,14 @@ static inline void update_curr_rt(struct

Page 39 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

if (lhas_rt_policy(curr))
return;

- delta_exec = now - curr->exec_start;
+ delta_exec = now - curr->se.exec_start;
if (unlikely((s64)delta_exec < 0))
delta_exec =0;
- if (unlikely(delta_exec > curr->exec_max))
- curr->exec_max = delta_exec;
+ if (unlikely(delta_exec > curr->se.exec_max))
+ curr->se.exec_max = delta_exec;

- curr->sum_exec_runtime += delta_exec;

- curr->exec_start = now;

+ curr->se.sum_exec_runtime += delta_exec;
+ curr->se.exec_start = now;

}

static void

@@ -89,7 +89,7 @@ static struct task_struct * pick_next_ta
gueue = array->queue + idx;
next = list_entry(queue->next, struct task_struct, run_list);

- next->exec_start = now;
+ next->se.exec_start = now;

return next;
}
@@ -97,7 +97,7 @@ static struct task_struct * pick_next_ta
static void put_prev_task_rt(struct rq *rq, struct task_struct *p, u64 now)
{
update_curr_rt(rg, now);
- p->exec_start = 0;
+ p->se.exec_start = 0;

}
/*

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

File Attachnents

1) sched-cfs-v17-rc4. patch, downl oaded 332 tines

Page 40 of 40 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=getfile&id=410
https://new-forum.openvz.org/index.php

