
Subject: [RFC][PATCH 0/6] Add group fairness to CFS - v1
Posted by Srivatsa Vaddagiri on Mon, 11 Jun 2007 15:47:24 GMT
View Forum Message <> Reply to Message

Ingo,
	Here's an update of the group fairness patch I have been working
on. Its against CFS v16 (sched-cfs-v2.6.22-rc4-mm2-v16.patch).

The core idea is to reuse much of CFS logic to apply fairness at higher
hierarchical levels (user, container etc). In this regard CFS engine has been
modified to deal with generic 'schedulable entities'. The patches
introduce two essential structures in CFS core:

	- struct sched_entity
		- represents a schedulable entity in a hierarchy. Task
		 is the lowest element in this hierarchy. Its ancestors
		 could be user, container etc. This structure stores
		 essential attributes/execution-history (wait_runtime etc)
		 which is required by CFS engine to provide fairness between
		 'struct sched_entities' at the same hierarchy.

	- struct lrq
		- represents (per-cpu) runqueue in which ready-to-run
		 'struct sched_entities' are queued. The fair clock
		 calculation is split to be per 'struct lrq'.

Here's a brief description of the patches to follow:

Patches 1-3 introduce the essential changes in CFS core to support this
concept. They rework existing code w/o any (intended!) change in functionality.

Patch 4 fixes some bad interaction between SCHED_RT and SCHED_NORMAL
tasks in current CFS.

Patch 5 introduces basic changes in CFS core to support group fairness.

Patch 6 hooks up scheduler with container patches in mm (as an interface
for task-grouping functionality).

Changes since last version:

	- Prelimnary SMP support included (based on the idea outlined at
	 http://lkml.org/lkml/2007/5/25/146)
	- Task grouping to which fairness is applied is based on Paul Menage's
	 container patches included in -mm tree. Usage of this feature
	 is described in Patch 6/6
	- Fix some real time and SCHED_NORMAL interactions (maintain

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3679&goto=18874#msg_18874
https://new-forum.openvz.org/index.php?t=post&reply_to=18874
https://new-forum.openvz.org/index.php

	 separate nr_running/raw_weighted counters for SCHED_NORMAL
	 tasks)
	- Support arbitrary levels of hierarchy. Previous version
	 supported only 2 levels. Current version makes no assumption
	 on the number of levels supported.

TODO:

	- Weighted fair-share support
		Currently each group gets "equal" share. Support
		weighted fair-share so that some groups deemed important
		get more than this "equal" share. I believe it is
		possible to use load_weight to achieve this goal
		(similar to how niced tasks use it to get differential
		bandwidth)

	- Separate out tunables
		Right now tunable are same for all layers of scheduling. I
	 	strongly think we will need to separate them, esp
		sysctl_sched_runtime_limit.

	- Flattening hierarchy
		This may be useful if we want to avoid cost of deep
		hierarchical scheduling in core scheduler, but at the
		same time want deeper hierarchical levels to be supported from
		user pov. William Lee Irwin has suggested basic technique at
		http://lkml.org/lkml/2007/5/26/81 which I need to
		experiment with. With this technique, for ex, it is
		possible to have core scheduler support two levels
		(container, task) but use weight adjustement
		to support more levels from user pov (container, user,
		process, task).

	- (SMP optimization) during load balance, pick cache-cold tasks
	 first to migrate

	- (optimization) reduce frequency of timer tick processing at
	 higher levels (similar to how load balancing frequency varies
	 across scheduling domains).

The patches have been very stable in my tests. There is however one oops I hit
just before sending this (!). I think I know the reason for that (some
cleanup required in RT<->NORMAL switch) and am currently investigating
that.

I am sending the patches largely to get feedback on the direction this
is heading.

Page 2 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Some results of the patches below.

Legends used in the results :-

cfs 	 = base cfs performance (sched-cfs-v2.6.22-rc4-mm2-v16.patch)
cfscc 	 = base cfs + patches 1-3 applied (core changes to cfs core)
cfsccrt = base cfs + patches 1-4 applied (fix RT/NORMAL interactions)
cfsgrpch = base cfs + patches 1-5 applied (group changes applied)
cfsgrpchdi = base cfs + all patches applied (CONFIG_FAIR_GROUP_SCHED disabled)
cfsgrpchen = base cfs + all patches applied (CONFIG_FAIR_GROUP_SCHED enabled)

1. lat_ctx (from lmbench):
==========================

Context switching - times in microseconds - smaller is better

Host OS 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
 ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw
--------- ------------- ------ ------ ------ ------ ------ ------- -------

cfs Linux 2.6.22- 6.2060 7.1200 7.7746 7.6880 11.27 8.61400 20.68
cfscc Linux 2.6.22- 6.3920 6.9800 7.9320 8.5420 12.1 9.64000 20.46
cfsccrt Linux 2.6.22- 6.5280 7.1600 7.7640 7.9340 11.35 9.34000 20.34
cfsgrpch Linux 2.6.22- 6.9400 7.3080 8.0620 8.5660 12.24 9.29200 21.04
cfsgrpchdi Linux 2.6.22- 6.7966 7.4033 8.1833 8.8166 11.76 9.53667 20.33
cfsgrpchen Linux 2.6.22- 7.3366 7.7666 7.9 8.8766 12.06 9.31337 21.03

Performance of CFS with all patches applied (but with CONFIG_FAIR_GROUP_SCHED
disabled) [cfsgrpchdi above] seems to be very close to base cfs
performance [cfs above] (delta within tolerable noise level limits?)

2. hackbench
============

hackbench -pipe 10:

cfs 0.787
cfscc 0.7547
cfsccrt 0.9014
cfsgrpch 0.8691
cfsgrpchdi 0.7864
cfsgrpchen 0.9229

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

hackbench -pipe 100:

cfs 3.726
cfscc 3.7216
cfsccrt 3.8151
cfsgrpch 3.6107
cfsgrpchdi 3.8468
cfsgrpchen 4.2332

3. Fairness result between users 'vatsa' and 'guest':

	The two groups were created as below in container filesystem:
	
	# mkdir /dev/cpuctl
	# mount -t container -ocpuctl none /dev/cpuctl
	# cd /dev/cpuctl
	# mkdir vatsa
	# mkdir guest
	
	# echo vatsa_shell_pid > vatsa/tasks
	# echo guest_shell_pid > guest/tasks

	# # Start tests now in the two user's shells

hackbench -pipe 10:

	vatsa : 1.0186
	guest : 1.0449

hackbench -pipe 100:

	vatsa : 6.9512
	guest : 7.5668	

Note: I have noticed that running lat_ctx in a loop for 10 times doesnt
give me good results. Basically I expected the loop to take same time for
both users (when run simultaneously), whereas it was taking different
times for different users. I think this can be solved by increasing
sysctl_sched_runtime_limit at group level (to remeber execution history
over a longer period).

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

https://lists.linux-foundation.org/mailman/listinfo/containers

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

