
Subject: Re: [ckrm-tech] [RFC] [PATCH 0/3] Add group fairness to CFS
Posted by Srivatsa Vaddagiri on Thu, 31 May 2007 03:26:57 GMT
View Forum Message <> Reply to Message

On Wed, May 30, 2007 at 01:13:59PM -0700, William Lee Irwin III wrote:
> On Wed, May 30, 2007 at 10:44:05PM +0530, Srivatsa Vaddagiri wrote:
> > Hmm ..so do you think this weight decomposition can be used to flatten
> > the tree all the way to a single level in case of cfs? That would mean we can
> > achieve group fairness with single level scheduling in cfs ..I am
> > somewhat skeptical that we can achieve group fairness with a single
> > level rb-tree (and w/o substantial changes to pick_next_task logic in cfs
> > that is), but if it can be accomplished would definitely be a great win.
>
> Yes, the hierarchy can be flattened completely and global task weights
> computed and used to achieve group fairness.

ok, lets say we are are considering a hierarchy of user->process->thread as
below:

Users = {U1, U2, U3}

where process in a user are:

U1 = {P0, P1, P2, P3, P4}
U2 = {P5, P6}
U3 = {P7}

and where threads/tasks in a process are:

P0 = {T0, T1}
P1 = {T2}
P2 = {T3, T4, T5}
P3 = {T6}
P4 = {T8}
P5 = {T9, T10}
P6 = {T11}
P7 = {T14, T15, T16}

If we need to achieve group fairness given single-level hierarchy,
then tasks need to be spread out in rb-tree like something below?

	 U1 U2 U3 U1 U2 U3
	|---------|---------|---------|---------|---------|---------|--- // ---
 t0	 t1	 t2	 t3	 t4	 t5 t6

[t0, t1 ..tN are equally spaced points in time. t1 = t0 + K, t2 = t1 + K ..]

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3615&goto=18724#msg_18724
https://new-forum.openvz.org/index.php?t=post&reply_to=18724
https://new-forum.openvz.org/index.php

Viewed at the top hierarchy level (users) tasks are spread such that each user
gets "equal" execution over some interval (lets say b/n t0-t3).

When viewed at the next lower hierarchy level (processes), it should look like:

 | U1 | U2 | U3 | U1 | U2 | U3 |
	|	 | | | | | |
	| P0 P1 P2| P5 P6 | P7 | P3 P4 P0 | P5 P6 | P7 |
	|---|---|---|----|-----|----------|---|---|---|----|-----|---------|-//-
	t0	 t1	 t2	 t3	t3' t4	 t5 t6

[contd below ..]

 | U1 | U2 | U3 | U1 | U2 | U3 |
	|	 | | | | | |
	| P1 P2 P3| P5 P6 | P7 | P4 P0 P1| P5 P6 | P7 |
 --// |---|---|---|----|-----|----------|---|---|---|----|-----|---------|-//-
 t6	 t7	 t8	 t9	 t10	 t11 t12

The available bandwidth to a user is dividided "equally" between various
processes of the user over some time (say between t0 - t3').

When viewed at the next lower hierarchy level (threads), it should look like:

 | U1 | U2 | U3 | U1 | U2 | U3 | | | | | | | | |
	|	 | | | | | |
	| P0| P1| P2| P5 | P6 | P7 | P3| P4| P0| P5 | P6 | P7 |
 | | | | | | | | | | | | | | |
	| T0| T2| T3| T9 | T11 | T14| T15 | T6| T8| T1| T10| T11 | T16| T14 |
 |---|---|---|----|-----|----|-----|---|---|---|----|-----|----|-----|-//
	t0	 t1	 t2	 t3	 t4	 t5 t6

(continuting below)

 | U1 | U2 | U3 | U1 | U2 | U3 | | | | | | | | |
	|	 | | | | | |
	| P1| P2| P3| P5 | P6 | P7 | P4| P0| P1| P5 | P6 | P7 |
 | | | | | | | | | | | | | | |
	| T2| T4| T6| T9 | T11 | T15| T16 | T8| T0|T2 | T10| T11 | T14| T14 |
 --// |---|---|---|----|-----|----|-----|---|---|---|----|-----|----|-----|-//
 t6	 t7	 t8	 t9	 t10	 t11 t12

Available bandwidth to a process is divided "equally" between threads of
the process.

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Although I have been using "equally" everywhere above, it needs to take
into account relative importance of tasks/processes/users.

> The changes aren't to pick_next_task() but rather to the ->fair_key
> computations.

Thats the $$ question I guess :) What computation of ->fair_key can we use
such that task execution sequence is (from the above example):

	T0, T2, T3, T9, T11, T14, T15, T6, T8, T1, T10, T11, T16, T14 ...

?

Of course, this ->fair_key computation should default to what it is
today when hierarchical res mgmt is disabled?

> In fact, I went a step beyond that.
>
>
> On Sat, May 26, 2007 at 08:41:12AM -0700, William Lee Irwin III wrote:
> >> In such a manner nice numbers obey the principle of least surprise.
>
> The step beyond was to show how nice numbers can be done with all that
> hierarchical task grouping so they have global effects instead of
> effects limited to the scope of the narrowest grouping hierarchy
> containing the task. I had actually assumed the weighting and
> flattening bits were already in your plans from some other post you
> made and was building upon that.

I would definitely be willing to try out any experiments you think of,
esp those that allow the hierarchy to be flattened. atm fair_key
calculation (in the context of cfs) seem to be the biggest challenge to
surmount for this to work.

--
Regards,
vatsa

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

