Subject: Re: [PATCH] ia64 sn xpc: Convert to use kthread API.
Posted by ebiederm on Wed, 02 May 2007 15:44:11 GMT

View Forum Message <> Reply to Message

Dean Nelson <dcn@sgi.com> writes:

> On Mon, Apr 30, 2007 at 10:22:30AM -0500, Dean Nelson wrote:

>> On Fri, Apr 27, 2007 at 02:33:32PM -0600, Eric W. Biederman wrote:

>> > Dean Nelson <dcn@sgi.com> writes:

>> >

>> > > Taking it one step further, if you added the notion of a thread pool,
>> > > where upon exit, a thread isn't destroyed but rather is queued ready to
>> > > handle the next kthread_create_quick() request.

>> >

>> > That might happen. So far | am avoiding the notion of a thread pool for
>> > as long as | can. There is some sense in it, especially in generalizing
>> > the svc thread pool code from nfs. But if I don't have to go there | would
>> > prefer it.

>>

>> This means that XPC will have to retain its thread pool, but | can

>> understand you not wanting to go there.

>

> On Thu, Apr 26, 2007 at 01:11:15PM -0600, Eric W. Biederman wrote:

>>

>> Ok. Because of the module unloading issue, and because we don't have
>> a lot of these threads running around, the current plan is to fix

>> thread_create and kthread_stop so that they must always be paired,

>> and so that kthread_stop will work correctly if the task has already

>> exited.

>>

>> Basically that just involves calling get_task_struct in kthread_create

>> and put_task_struct in kthread_stop.

>

> Okay, so | need to expand upon Christoph Hellwig's patch so that all

> the kthread_create()'d threads are kthread_stop()'d.

>

> This is easy to do for the XPC thread that exists for the lifetime of XPC,

> as well as for the threads created to manage the SGI system partitions.

>

> XPC has the one discovery thread that is created when XPC is first started
> and exits as soon as it has finished discovering all existing SGI system

> partitions. With your forthcoming change to kthread_stop() that will allow

> it to be called after the thread has exited, doing this one is also easy.

> Note that the kthread_stop() for this discovery thread won't occur until

> XPC is rmmod'd. This means that its task_struct will not be freed for

> possibly a very long time (i.e., weeks). Is that a problem?

As long as there is only one, not really. It would be good if we could

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=220
https://new-forum.openvz.org/index.php?t=rview&th=3574&goto=18576#msg_18576
https://new-forum.openvz.org/index.php?t=post&reply_to=18576
https://new-forum.openvz.org/index.php

get rid of it though.

The practical problem is the race with rmmod, in particular if someone
calls rmmod while this thread is still running.

If I get clever | think this is likely solvable with something like.

kthread_maybe_stop(struct task_struct **loc)

{
struct task_struct *tsk;
tsk = xchg(loc, NULL);
if (tsk)
kthread_stop(tsk);
}
kthread_stop_self(struct task_struct **loc, int exit_code)
{

struct task_struct *tsk;

tsk = xchg(loc, NULL);
if (tsk)
put_task_struct(tsk);
do_exit(tsk);
}

I'm not quite convinced that is a common enough paradigm to implement
that.

> But then we come to XPC's pool of threads that deliver channel messages
> to the appropriate consumer (like XPNET) and can block indefinitely. As

> mentioned earlier there could be hundreds if not thousands of these

> (our systems keep getting bigger). So now requiring a kthread_stop()

> for each one of these becomes more of a problem, as it is a lot of

> task_struct pointers to maintain.

>

> Currently, XPC maintains these threads via a

> wait_event_interruptible_exclusive() queue so that it can wakeup as many
> or as few as needed at any given moment by calling wake_up_nr(). When XPC
> is rmmod'd, a flag is set which causes them to exit and wake_up_all()

> is called. Therefore XPC dosen't need to remember their pids or

> task_struct pointers.

>

> So what would you suggest we do for this pool of threads?

Good question.

The whole concept of something that feels like a core part of the
platform code being modular I'm still looking at strange.

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> |s there any way to have a version of kthread_create() that doesn't

> require a matching kthread_stop()? Or add a kthread_not_stopping()
> that does the put_task_struct() call, so as to eliminate the need for

> calling kthread_stop()?

Yes. | was thinking calling it kthread_orphan or something like that.
We can't make anything like that the default, because of the modular
remove problem, but it's not to hard.

> Or should we reconsider the kthread pool approach

> (and get XPC out of the thread management business altogether)? Robin
> Holt is putting together a proposal for how one could do a kthread pool,

> it should provide a bit more justification for going down that road.

Eric

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

