
Subject: Re: Getting the new RxRPC patches upstream
Posted by David Howells on Tue, 24 Apr 2007 16:58:27 GMT
View Forum Message <> Reply to Message

Oleg Nesterov <oleg@tv-sign.ru> wrote:

> > > The current code uses del_timer_sync(). It will also return 0. However,
> > > it will spin waiting for timer->function() to complete. So we are just
> > > wasting CPU.
> >
> > That's my objection to using cancel_delayed_work() as it stands, although in
> > most cases it's a relatively minor waste of time. However, if the timer
> > expiry routine gets interrupted then it may not be so minor... So, yes, I'm
> > in full agreement with you there.
>
> Great. I'll send the s/del_timer_sync/del_timer/ patch.

I didn't say I necessarily agreed that this was a good idea. I just meant that
I agree that it will waste CPU. You must still audit all uses of
cancel_delayed_work().

> Aha, now I see what you mean. However. Why the code above is better then
>
> 	cancel_delayed_work(&afs_server_reaper);
> 	schedule_delayed_work(&afs_server_reaper, 0);
>
> ? (I assume we already changed cancel_delayed_work() to use del_timer).

Because calling schedule_delayed_work() is a waste of CPU if the timer expiry
handler is currently running at this time as *that* is going to also schedule
the delayed work item.

> If delayed_work_timer_fn() is not running - both variants (let's denote them
> as 1 and 2) do the same.

Yes, but that's not the point.

> Now suppose that delayed_work_timer_fn() is running.
>
> 	1: lock_timer_base(), return -1, skip schedule_delayed_work().
>
> 	2: check timer_pending(), return 0, call schedule_delayed_work(),
> 	 return immediately because test_and_set_bit(WORK_STRUCT_PENDING)
> 	 fails.

I don't see what you're illustrating here. Are these meant to be two steps in
a single process? Or are they two alternate steps?

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=877
https://new-forum.openvz.org/index.php?t=rview&th=3574&goto=18517#msg_18517
https://new-forum.openvz.org/index.php?t=post&reply_to=18517
https://new-forum.openvz.org/index.php

> So I still don't think try_to_del_timer_sync() can help in this particular
> case.

It permits us to avoid the test_and_set_bit() under some circumstances.

> To some extent, try_to_cancel_delayed_work is
>
> 	int try_to_cancel_delayed_work(dwork)
> 	{
> 		ret = cancel_delayed_work(dwork);
> 		if (!ret && work_pending(&dwork->work))
> 			ret = -1;
> 		return ret;
> 	}
>
> iow, work_pending() looks like a more "precise" indication that work->func()
> is going to run soon.

Ah, but the timer routine may try to set the work item pending flag *after* the
work_pending() check you have here. Furthermore, it would be better to avoid
the work_pending() check entirely because that check involves interacting with
atomic ops done on other CPUs. try_to_del_timer_sync() returning -1 tells us
without a shadow of a doubt that the work item is either scheduled now or will
be scheduled very shortly, thus allowing us to avoid having to do it ourself.

David

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

