
Subject: Re:  Re: [PATCHSET] 2.6.20-lxc8
Posted by Benjamin Thery on Tue, 27 Mar 2007 16:34:44 GMT
View Forum Message <> Reply to Message

Hi,

Yesterday, I applied a patch similar to Kirill's one that skip 
skb_cow() in ip_forward when the device is a etun, and it does help a lot.

With the patch the cpu load increase is reduced by 50%. Part of the 
problem is "solved".

Here are the figures for netperf:

(Host A -> Host B
  Host A is running kernel 2.6.20-rc5-netns.i386)

                              Throughput    CPU load

- without container:              719.78     10.45
- inside a container (no patch)   719.37     21.88
- inside a container with patch:  728.93     15.41

The CPU load with the ip_forward patch is now "only" 50% higher (10% 
compared to 15%) than the reference case without container.

The throughput is even better (I repeated the test a few times and I 
always got better results from inside the container).

(1) Why skb_cow() performs the copy?

I also added some traces to understand why skb_cow() does copy the 
skb: is it insufficient headroom or that the skb has been cloned 
previously?
In our case, the condition is always that the "TCP skb" is marked as 
cloned.
It is likely that these skb have been cloned in tcp_skb_transmit().

(2) Who consumes the other 5% percent cpu?

With the patch installed oprofile reports that pskb_expand_head() 
(called by skb_cow) has disappeared from the top cpu consumers list.

Now, the remaining symbol that shows unusual activity is 
csum_partial_copy_generic().
I'd like to find who is the caller, unfortunately, this one is harder 
to track. It is written in assembler and called by "static inline" 

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=1816
https://new-forum.openvz.org/index.php?t=rview&th=3528&goto=18033#msg_18033
https://new-forum.openvz.org/index.php?t=post&reply_to=18033
https://new-forum.openvz.org/index.php


routines and Systemtap doesn't like that. :(

So, that was the current status.
I'm continuing my investigations.

Regards,
Benjamin

Eric W. Biederman wrote:
> Kirill Korotaev <dev@openvz.org> writes:
> 
>> we have the hack below in ip_forward() to avoid skb_cow(),
>> Banjamin, can you check whether it helps in your case please?
>> (NOTE: you will need to replace check for NETIF_F_VENET with something else
>>  or introduce the same flag on etun device).
> 
> Ugh.  The thing is skb_cow should be free.  It only has a cost when the skb
> is too small or there is a second copy of the skb.  I don't there is a technical
> reason for either of those to be the case when we are going over ethernet.
> 
> And since the hardware header needs to change as well your hack is actually broken
> if the incoming network interface is not ethernet. 
> 
> So while I can see this hack for testing I'd much rather see if we can actually
> fix this one cleanly.
> 
> Unless you understand what is triggering the skb_cow to actually perform
> the copy.
> 
> Eric
> 
>> diff -upr linux-2.6.18-rhel5.orig/net/ipv4/ip_forward.c
>> linux-2.6.18-rhel5-028stab023/net/ipv4/ip_forward.c
>> --- linux-2.6.18-rhel5.orig/net/ipv4/ip_forward.c 2006-09-20 07:42:06.000000000
>> +0400
>> +++ linux-2.6.18-rhel5-028stab023/net/ipv4/ip_forward.c 2007-03-20
>> 17:22:45.000000000 +0300
>> @@ -86,6 +86,24 @@ int ip_forward(struct sk_buff *skb)
>>         if (opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
>>                 goto sr_failed;
>>
>> +       /*
>> +        * We try to optimize forwarding of VE packets:
>> +        * do not decrement TTL (and so save skb_cow)
>> +        * during forwarding of outgoing pkts from VE.
>> +        * For incoming pkts we still do ttl decr,
>> +        * since such skb is not cloned and does not require

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


>> +        * actual cow. So, there is at least one place
>> +        * in pkts path with mandatory ttl decr, that is
>> +        * sufficient to prevent routing loops.
>> +        */
>> +       iph = skb->nh.iph;
>> +       if (
>> +#ifdef CONFIG_IP_ROUTE_NAT
>> + (rt->rt_flags & RTCF_NAT) == 0 && /* no NAT mangling expected */
>> +#endif                                           /* and */
>> +           (skb->dev->features & NETIF_F_VENET)) /* src is VENET device */
>> +               goto no_ttl_decr;
>> +
>>         /* We are about to mangle packet. Copy it! */
>>         if (skb_cow(skb, LL_RESERVED_SPACE(rt->u.dst.dev)+rt->u.dst.header_len))
>>                 goto drop;
>> @@ -94,6 +112,8 @@ int ip_forward(struct sk_buff *skb)
>>         /* Decrease ttl after skb cow done */
>>         ip_decrease_ttl(iph);
>>
>> +no_ttl_decr:
>> +
>>         /*
>>          *      We now generate an ICMP HOST REDIRECT giving the route
>>          *      we calculated.
>> @@ -121,3 +141,5 @@ drop:
> 

-- 
B e n j a m i n   T h e r y  - BULL/DT/Open Software R&D

    http://www.bull.com
_______________________________________________
Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

