
Subject: Re: [PATCH 2/2] Replace pid_t in autofs with struct pid reference
Posted by serue on Mon, 19 Mar 2007 20:08:39 GMT
View Forum Message <> Reply to Message

Quoting Eric W. Biederman (ebiederm@xmission.com):
> Ian Kent <raven@themaw.net> writes:
>
> > On Fri, 2007-03-16 at 15:44 +0100, Cedric Le Goater wrote:
> >> > How about you send over the autofs4 bit and I'll have a look (the autofs
> >> > patch looked fine). That would save me a bit of time and if there are
> >> > any changes needed I can send an updated patch for you guys to review. I
> >> > don't think autofs4 uses pids differently, in principle, than autofs so
> >> > it "should" be straight forward.
> >>
> >> Here's the latest.
> >
> > That looks OK to me, assuming the "find_get_pid" and friends do what
> > they suggest, but I'll give it a closer look tomorrow.
> >
> > A ref count is used here, what affect does that have on a thread (or
> > process) that may go away (or be summarily killed) without umounting the
> > mount?
>
> Nothing.
>
> The primary advantage is that you are pid wrap around safe as the struct
> pid will never point to another process after one of those events occurs.
>
> struct pid is a very small structure so not freeing it when the process
> it originally referred to goes away is no big deal. Although not leaking
> when you stop using it is still important.
>
> The other big use of struct pid is that to get the user space pid value
> you call pid_nr(). Depending on the pid namespace of the caller the return
> value of pid_nr() can be different. So when you store a pid or pass a pid
> between processes that should be done by passing a struct pid because those
> processes could be in different pid namespaces.
>
> >> Index: 2.6.20/fs/autofs4/waitq.c
> >> ===
> >> --- 2.6.20.orig/fs/autofs4/waitq.c
> >> +++ 2.6.20/fs/autofs4/waitq.c
> >> @@ -292,8 +292,8 @@ int autofs4_wait(struct autofs_sb_info *
> >> 		wq->ino = autofs4_get_ino(sbi);
> >> 		wq->uid = current->uid;
> >> 		wq->gid = current->gid;
> >> -		wq->pid = current->pid;
> >> -		wq->tgid = current->tgid;

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=3497&goto=17883#msg_17883
https://new-forum.openvz.org/index.php?t=post&reply_to=17883
https://new-forum.openvz.org/index.php

> >> +		wq->pid = pid_nr(task_pid(current));
> >> +		wq->tgid = pid_nr(task_tgid(current));
> >> 		wq->status = -EINTR; /* Status return if interrupted */
> >> 		atomic_set(&wq->wait_ctr, 2);
> >> 		mutex_unlock(&sbi->wq_mutex);
>
> I have a concern with this bit as I my quick review said the wait queue
> persists, and if so we should be cache the struct pid pointer, not the
> pid_t value. Heck the whol pid_nr(task_xxx(current)) idiom I find very
> suspicious.

Based just on what I see right here I agree it seems like we would want
to store a ref to the pid, not store the pid_nr(pid) output, so in this
context it is suspicious.

OTOH if you're saying that using pid_nr(task_pid(current)) anywhere
should always be 'wrong', then please explain why, as I think we have a
disagreement on the meanings of the structs involved. In other words,
at some point I expect the only way to get a "pid number" out of a task
would be using this exact idiom, "pid_nr(task_pid(current))".

-serge

Containers mailing list
Containers@lists.linux-foundation.org
https://lists.linux-foundation.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

