Subject: Re: [RFC][PATCH 4/7] RSS accounting hooks over the code
Posted by Balbir Singh on Thu, 15 Mar 2007 05:44:27 GMT

View Forum Message <> Reply to Message

Nick Piggin wrote:

> Kirill Korotaev wrote:

>

>>> The approaches | have seen that don't have a struct page pointer, do
>>> intrusive things like try to put hooks everywhere throughout the kernel
>>> where a userspace task can cause an allocation (and of course end up
>>> missing many, so they aren't secure anyway)... and basically just
>>> nasty stuff that will never get merged.

>>

>>

>> User beancounters patch has got through all these...

>> The approach where each charged object has a pointer to the owner
>> container,

>> who has charged it - is the most easy/clean way to handle

>> all the problems with dynamic context change, races, etc.

>> and 1 pointer in page struct is just 0.1% overehad.

>

> The pointer in struct page approach is a decent one, which | have

> liked since this whole container effort came up. IIRC Linus and Alan

> also thought that was a reasonable way to go.

>

> | haven't reviewed the rest of the beancounters patch since looking

> at it quite a few months ago... | probably don't have time for a

> good review at the moment, but | should eventually.

>

This patch is not really beancounters.

1. It uses the containers framework
2. It is similar to my RSS controller (http://lkml.org/lkml/2007/2/26/8)

| would say that beancounters are changing and evolving.

>>> Struct page overhead really isn't bad. Sure, nobody who doesn't use
>>> containers will want to turn it on, but unless you're using a big PAE
>>> system you're actually unlikely to notice.

>>

>>

>> big PAE doesn't make any difference IMHO

>> (until struct pages are not created for non-present physical memory
>> areas)

>

> The issue is just that struct pages use low memory, which is a really

> scarce commodity on PAE. One more pointer in the struct page means
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> 64MB less lowmem.

>

> But PAE is crap anyway. We've already made enough concessions in the
> kernel to support it. | agree: struct page overhead is not really

> significant. The benefits of simplicity seems to outweigh the downside.
>

>>> But again, I'll say the node-container approach of course does avoid
>>> this nicely (because we already can get the node from the page). So
>>> definitely that approach needs to be discredited before going with this
>>> one.

>>

>>

>> But it lacks some other features:

>> 1. page can't be shared easily with another container

>

> | think they could be shared. You allocate _new_ pages from your own
> node, but you can definitely use existing pages allocated to other

> nodes.

>

>> 2. shared page can't be accounted honestly to containers

>> as fraction=PAGE_SIZE/containers-using-it

>

> Yes there would be some accounting differences. | think it is hard

> to say exactly what containers are "using" what page anyway, though.
> What do you say about unmapped pages? Kernel allocations? etc.

>

>> 3. It doesn't help accounting of kernel memory structures.

>> e.g. in OpenVZ we use exactly the same pointer on the page

>> to track which container owns it, e.g. pages used for page

>> tables are accounted this way.

>

>?

> page_to_nid(page) ~= container that owns it.

>

>> 4., | guess container destroy requires destroy of memory zone,

>> which means write out of dirty data. Which doesn't sound

>> good for me as well.

>

> | haven't looked at any implementation, but | think it is fine for

> the zone to stay around.

>

>> 5. memory reclamation in case of global memory shortage

>> pecomes a tricky/unfair task.

>

> | don't understand why? You can much more easily target a specific

> container for reclaim with this approach than with others (because

> you have an Iru per container).

>
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Yes, but we break the global LRU. With these RSS patches, reclaim not
triggered by containers still uses the global LRU, by using nodes,
we would have lost the global LRU.

>> 6. You cannot overcommit. AFAIU, the memory should be granted

>> to node exclusive usage and cannot be used by by another containers,
>> even if it is unused. This is not an option for us.

>

> I'm not sure about that. If you have a larger number of nodes, then

> you could assign more free nodes to a container on demand. But |

> think there would definitely be less flexibility with nodes...

>

> | don't know... and seeing as | don't really know where the google

> guys are going with it, I won't misrepresent their work any further ;)
>

>

>>> Everyone seems to have a plan ;) | don't read the containers list...
>>> does everyone still have *different* plans, or is any sort of consensus
>>> peing reached?

>>

>>

>> hope we'll have it soon :)

>

> Good luck ;)

>

| think we have made some forward progress on the consensus.

Warm Regards,

Balbir Singh

Linux Technology Center
IBM, ISTL

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers
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