Subject: Re: Summary of resource management discussion
Posted by Herbert Poetzl on Tue, 13 Mar 2007 16:24:59 GMT

View Forum Message <> Reply to Message

On Mon, Mar 12, 2007 at 06:12:26PM +0530, Srivatsa Vaddagiri wrote:

> | happened to read the entire thread (@ http://lkml.org/lkml/2007/3/1/159)
> all over again and felt it may be usefull to summarize the discussions so far.
>

> |If | have missed any imp. points or falsely represented someone's view

> (unintentionally of course!), then | would be glad to be corrected.

>

> 1. Which task-grouping mechanism?

>

> [This question is the most vital one that needs a consensus]

>

> Resource management generally works by apply resource controls over a -group-
> of tasks (tasks of a user, tasks in a vserver/container etc).

>

> What mechanism do we use to group tasks for res mgmt purposes?

>

> Options:

>

> a. Paul Menage's container(/uh-a-diff-name-pls?) patches

>

The patches introduce a new pointer in task_struct, struct
container_group *containers, and a new structure 'struct container'.

Tasks pointing to the same 'struct container' object (via their
tsk->containers->container[] pointer) are considered to form

a group associated with that container. The attributes associated
with a container (ex: cpu_limit, rss_limit, cpus/mems_allowed) are
decided by the options passed to mount command (which binds
one/more/all resource controllers to a hierarchy).

+ For workload management, where it is desirable to manage resource
consumption of a run-time defined (potentially arbitrary) group of
tasks, then this patch is handy, as no existing pointers in
task_struct can be used to form such a run-time decided group.

- (subjective!) If there is a existing grouping mechanism already (say
tsk->nsproxy[->pid_ns]) over which res control needs to be applied,
then the new grouping mechanism can be considered redundant (it can
eat up unnecessary space in task_struct)

What may help avoid this redundancy is to re-build existing
grouping mechanism (say tsk->nsproxy) using the container patches.
Serge however expressed some doubts on such a implementation
(for ex: how will one build hierarchical cpusets and non-hierarchical

VVVVVVVVVVVVVVVVYVYVYVVYVYVYVYV

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=206
https://new-forum.openvz.org/index.php?t=rview&th=3488&goto=17801#msg_17801
https://new-forum.openvz.org/index.php?t=post&reply_to=17801
https://new-forum.openvz.org/index.php

namespaces using that single 'grouping’ pointer in task_struct) and
also felt it may slow down things a bit from namespaces pov (more
dereferences reqd to get to a task's namespace).

b. Reuse existing pointers in task_struct, tsk->nsproxy or better perhaps
tsk->nsproxy->pid_ns, as the means to group tasks (rcfs patches)

This is based on the observation that the group of tasks whose resource
consumption need to be managed is already defined in the kernel by
existing pointers (either tsk->nsproxy or tsk->nsproxy->pid_ns)

+ reuses existing grouping mechanism in kernel

- mixes resource and name spaces (?)

c. Introduce yet-another new structure (‘struct res_ctl?') which houses
structure in task_struct (Herbert Poetzl).

Tasks that have a pointer to the same 'struct res_ctl' are considered
to form a group for res mgmt purpose

+ Accessing res ctl information in scheduler fast path is
optimized (only two-dereferences required)

- If all resource control parameters (cpu, memory, io etc) are
lumped together in same structure, it makes it hard to
have resource classes (cpu, mem etc) that are independent of
each other.

- If we introduce several pointers in task_struct to allow
separation of resource classes, then it will increase storage space
in task_struct and also fork time (we have to take ref count
on more than one object now). Herbert thinks this is worthy
tradeoff for the benefit gained in scheduler fast paths.

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

what about identifying different resource categories and
handling them according to the typical usage pattern?

like the following:

- cpu and scheduler related accounting/limits
- memory related accounting/limits
- network related accounting/limits
- generic/file system related accounting/limits

| don't worry too much about having the generic/file stuff
attached to the nsproxy, but the cpu/sched stuff might be

Page 2 of 5 ---- Generated from OpenVZ Forum

resource control (& possibly pid_ns?) parameters and a new pointer to this

https://new-forum.openvz.org/index.php

better off being directly reachable from the task
(the memory related stuff might be placed in a zone or so)

> 2. Where do we put resource control parameters for a group?
>

> This depends on 1. So the options are:
>
> a. Paul Menage's patches:
>
(tsk->containers->container[cpu_ctlr.subsys_id] - X)->cpu_limit

>

>

> An optimized version of the above is:

> (tsk->containers->subsys[cpu_ctlr.subsys_id] - X)->cpu_limit
>
>

> b. rcfs

> tsk->nsproxy->ctlr_data[cpu_ctlr.subsys_id]->cpu_limit
>

> c. Herbert's proposal

> tsk->res_ctl->cpu_limit

see above, but yes ...

> 3. How are cpusets related to vserver/containers?

>

> Should it be possible to, lets say, create exclusive cpusets and
> attach containers to different cpusets?

that is what Linux-VServer does atm, i.e. you can put
an entire guest into a specific cpu set

> 4. Interface
Filesystem vs system call

Filesystem:

+ natural way to represent hierarchical data

+ File permission model convenient to delegate
management of part of a tree to one user

+ Ease of use with scripts

- performance of filesystem interfaces is quite bad

- you need to do a lot to make the fs consistant for
e.g. find and friends (regarding links and filesize)

- you have a quite hard time to do atomic operations
(except for the ioctl interface, which nobody likes)

>
>
>
>
>
>
>
>
> (from Herbet Poetzl):
>
>
>
>
>
>
> - vfs/mnt namespaces complicate the access to this

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

new filesystem once you start moving around (between
the spaces)

5. If we use filesystem interface, then should it be in /proc? (Eric)

- /[proc doesn't allow the flexibility of say creating multiple
hierarchies and binding different resource controllers to each
hierarchy

6. As tasks move around namespaces/resource-classes, their
tsk->nsproxy/containers object will change. Do we simple create
a new nsproxy/containers object or optimize storage by searching
for one which matches the task's new requirements?

- Linux Vserver follows former approach i.e simply creates
a new nsproxy with pointers to required namespace objects

VVVVVVVVVVVVVYVYVYVYV

which | consider suboptimal, but it was straight forward
to implement ...

> 7. Hierarchy

>
> - For res mgmt, do we need to worry about hierarchy at all?

>

> - If we consider cpuset to be a resource controller,

> then we have one resource controller who already

> supports hierarchy

>

> - If we don't support hierarchy in res controllers today

> but were to add that support later, then

> user-interface shouldn't change. That's why

> designining -atleast- the user interface to support

> hierarchy may make sense

>

> - Do we let resource classes to be split independent of each?

>

> For ex: CPU resource classes are independent of memory resource
> classes. This inturn affect whether the Paul Menage's patches
> need to support multiple hierarchy feature.

thanks,

Herbert

> -

> Regards,

> vatsa

>

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> Containers mailing list
> Containers@lists.osdl.org
> https://lists.osdl.org/mailman/listinfo/containers

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

