
Subject: Summary of resource management discussion
Posted by Srivatsa Vaddagiri on Mon, 12 Mar 2007 12:42:26 GMT
View Forum Message <> Reply to Message

I happened to read the entire thread (@ http://lkml.org/lkml/2007/3/1/159)
all over again and felt it may be usefull to summarize the discussions so far.

If I have missed any imp. points or falsely represented someone's view
(unintentionally of course!), then I would be glad to be corrected.

1. Which task-grouping mechanism?
	
	[This question is the most vital one that needs a consensus]

Resource management generally works by apply resource controls over a -group-
of tasks (tasks of a user, tasks in a vserver/container etc).

What mechanism do we use to group tasks for res mgmt purposes?

Options:

a. Paul Menage's container(/uh-a-diff-name-pls?) patches

	The patches introduce a new pointer in task_struct, struct
	container_group *containers, and a new structure 'struct container'.

	Tasks pointing to the same 'struct container' object (via their
	tsk->containers->container[] pointer) are considered to form
	a group associated with that container. The attributes associated
	with a container (ex: cpu_limit, rss_limit, cpus/mems_allowed) are
	decided by the options passed to mount command (which binds
	one/more/all resource controllers to a hierarchy).

	+ For workload management, where it is desirable to manage resource
	 consumption of a run-time defined (potentially arbitrary) group of
	 tasks, then this patch is handy, as no existing pointers in
	 task_struct can be used to form such a run-time decided group.

	- (subjective!) If there is a existing grouping mechanism already (say
	 tsk->nsproxy[->pid_ns]) over which res control needs to be applied,
	 then the new grouping mechanism can be considered redundant (it can
	 eat up unnecessary space in task_struct)

 What may help avoid this redundancy is to re-build existing
	 grouping mechanism (say tsk->nsproxy) using the container patches.
	 Serge however expressed some doubts on such a implementation
	 (for ex: how will one build hierarchical cpusets and non-hierarchical
	 namespaces using that single 'grouping' pointer in task_struct) and

Page 1 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3488&goto=17738#msg_17738
https://new-forum.openvz.org/index.php?t=post&reply_to=17738
https://new-forum.openvz.org/index.php

	 also felt it may slow down things a bit from namespaces pov (more
	 dereferences reqd to get to a task's namespace).

b. Reuse existing pointers in task_struct, tsk->nsproxy or better perhaps
 tsk->nsproxy->pid_ns, as the means to group tasks (rcfs patches)

	This is based on the observation that the group of tasks whose resource
	consumption need to be managed is already defined in the kernel by
	existing pointers (either tsk->nsproxy or tsk->nsproxy->pid_ns)

	+ reuses existing grouping mechanism in kernel

	- mixes resource and name spaces (?)

c. Introduce yet-another new structure ('struct res_ctl?') which houses
 resource control (& possibly pid_ns?) parameters and a new pointer to this
 structure in task_struct (Herbert Poetzl).

 	Tasks that have a pointer to the same 'struct res_ctl' are considered
	to form a group for res mgmt purpose

	+ Accessing res ctl information in scheduler fast path is
	 optimized (only two-dereferences required)

	- If all resource control parameters (cpu, memory, io etc) are
	 lumped together in same structure, it makes it hard to
	 have resource classes (cpu, mem etc) that are independent of
	 each other.

	- If we introduce several pointers in task_struct to allow
	 separation of resource classes, then it will increase storage space
	 in task_struct and also fork time (we have to take ref count
	 on more than one object now). Herbert thinks this is worthy
	 tradeoff for the benefit gained in scheduler fast paths.

2. Where do we put resource control parameters for a group?

	This depends on 1. So the options are:

a. Paul Menage's patches:

	(tsk->containers->container[cpu_ctlr.subsys_id] - X)->cpu_limit

 An optimized version of the above is:
	(tsk->containers->subsys[cpu_ctlr.subsys_id] - X)->cpu_limit

Page 2 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

b. rcfs
	tsk->nsproxy->ctlr_data[cpu_ctlr.subsys_id]->cpu_limit

c. Herbert's proposal
	tsl->res_ctl->cpu_limit

3. How are cpusets related to vserver/containers?

	Should it be possible to, lets say, create exclusive cpusets and
	attach containers to different cpusets?

4. Interface
	Filesystem vs system call

	Filesystem:
		+ natural way to represent hierarchical data
		+ File permission model convenient to delegate
	 	 management of part of a tree to one user
		+ Ease of use with scripts

		(from Herbet Poetzl):

		- performance of filesystem interfaces is quite bad
		- you need to do a lot to make the fs consistant for
		 e.g. find and friends (regarding links and filesize)
		- you have a quite hard time to do atomic operations
		 (except for the ioctl interface, which nobody likes)
		- vfs/mnt namespaces complicate the access to this
		 new filesystem once you start moving around (between
	 the spaces)

5. If we use filesystem interface, then should it be in /proc? (Eric)

	- /proc doesn't allow the flexibility of say creating multiple
	 hierarchies and binding different resource controllers to each
	 hierarchy

6. As tasks move around namespaces/resource-classes, their
 tsk->nsproxy/containers object will change. Do we simple create
 a new nsproxy/containers object or optimize storage by searching
 for one which matches the task's new requirements?

	- Linux Vserver follows former approach i.e simply creates
	 a new nsproxy with pointers to required namespace objects

7. Hierarchy

Page 3 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

	- For res mgmt, do we need to worry about hierarchy at all?

		- If we consider cpuset to be a resource controller,
	 	 then we have one resource controller who already
		 supports hierarchy

		- If we don't support hierarchy in res controllers today
		 but were to add that support later, then
		 user-interface shouldn't change. That's why
		 designining -atleast- the user interface to support
		 hierarchy may make sense

	- Do we let resource classes to be split independent of each?

	 For ex: CPU resource classes are independent of memory resource
	 classes. This inturn affect whether the Paul Menage's patches
	 need to support multiple hierarchy feature.

--
Regards,
vatsa

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Page 4 of 4 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

