Subject: Re: [RFC][PATCH 3/5] Use pid namespace from struct pid_nrs list
Posted by ebiederm on Sun, 11 Mar 2007 17:52:52 GMT

View Forum Message <> Reply to Message

"Serge E. Hallyn" <serue@us.ibm.com> writes:

> Quoting Eric W. Biederman (ebiederm@xmission.com):

>> sukadev@us.ibm.com writes:

>>

>> > From: Sukadev Bhattiprolu <sukadev@us.ibm.com>

>> > Subject: [RFC][PATCH 3/5] Use pid namespace from struct pid_nrs list
>> >

>> > Stop using task->nsproxy->pid_ns. Use pid_namespace from pid->pid_nrs
>> > [ist instead.

>> >

>> > To simplify error handling, this patch moves processing of CLONE_NEWPID
>> > flag, currently in copy_namespaces()/copy_process(), to alloc_pid() which
>> > is where the process association with a pid namespace is established.

>> >

>> > i.e when cloning a new pid namespace, alloc_pid() allocates a new pid_nr
>> > for both the parent and child namespaces.

>>

>>

>> This patch seems to do a bit much, it is hard to follow what changes you

>> are making.

>

> |s this a design comment, or do you mean you'd like to see it broken

> into two or more patches?

The latter. There is no reason for the changes to remove the use
of nsproxy->pid_ns need to be all in one patch.

>> |t probably makes sense to modify things so alloc_pid can do everything
>> it needs to.

>>

>> |t looks like we can safely move alloc_pid into copy_process and

>> just dig out the pid number and place it in nr if copy_process succeeds.
>>

>> Which should allow the special case for setting the child reaper to go
>> away, because we can allocate the task_struct before allocating the struct
>> pid.

>

> That would be nice. That little reaper setting helper bugs me.

Which is why | suggested the reorganization....

>> > |ndex: Ix26-20-mm2b/kernel/pid.c

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=220
https://new-forum.openvz.org/index.php?t=rview&th=3481&goto=17699#msg_17699
https://new-forum.openvz.org/index.php?t=post&reply_to=17699
https://new-forum.openvz.org/index.php

>> > --- |x26-20-mm2b.orig/kernel/pid.c 2007-03-09 19:00:42.000000000 -0800
>> > +++ [X26-20-mm2b/kernel/pid.c 2007-03-09 19:01:09.000000000 -0800
>>> @@ -221,8 +221,13 @@ fastcall void free_pid(struct pid *pid)
>>> hlist_del_rcu(&pid->pid_chain);

>> > spin_unlock _irgrestore(&pidmap_lock, flags);

>> >

>> > - hlist_for_each_entry(pid_nr, pos, &pid->pid_nrs, node)

>> > + hlist_for_each_entry(pid_nr, pos, &pid->pid_nrs, node) {

>>> free_pidmap(pid_nr->pid_ns, pid_nr->nr);

>> > +

>> >+ [* put the reference we got in kref_init() in clone_pid_ns() */

>> >+ if (pid_nr->nr == 1)

>> >+ put_pid_ns(pid_nr->pid_ns);

>>

>> Ok. This seems to make sense, but why restrict this to only pid 1?
>> I'm almost certain this will be the case, but... this seems a like

>> a unwarranted special case at the moment.

>>

>> Basically why is it safe to restrict this to pid == 1. Is it possible

>> that we can race here?

>

> | think he's dropping an extra reference due to the pid_ns count being
> set to 1 then alloce'd for each pid. Rather than worry about a race

> here i'd prefer the extra reference be gotten rid of.

This is the only put_pid_ns | could find, and free_pid is the only
place | could find it.

Regardless casual inspection of the code is not showing what is going
on and why so this part of the patch needs to be addressed.

>> > -struct pid *alloc_pid(void)

>> > +struct pid *alloc_pid(int flags)

>>> {

>>> struct pid *pid;

>>> enum pid_type type;

>>>-intnr=-1;

>> > - struct pid_nr *pid_nr;

>> > + struct pid_nr *pid_nr[2] = { NULL, NULL};

>> | would rather not see pid_nr special cased this way at all (a loop?)
>> put if we are going to | think two separate variables makes more

>> sense than this array.

>

> Yes, the plan is for it to become a loop, with another CLONE flag to

> specify whether all parent pid_namespaces should get a pid entry for
> these processes or not. I'd love to just make that always the case, but
> I'm afraid the clone flag is necessary else kernel memory use is going

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> to skyrocket too quickly.

| doubt kernel memory will sky rocket. The normal case is just two
pids. We can have an arbitrary nesting limit to prevent the worst
abuses.

If you don't create all of the pids you get into weird semantic
problems, and a lot more complex kernel/user space interface.

Eric

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

