
Subject: Re: [PATCH 1/2] rcfs core patch
Posted by Herbert Poetzl on Sat, 10 Mar 2007 01:19:53 GMT
View Forum Message <> Reply to Message

On Fri, Mar 09, 2007 at 11:27:07PM +0530, Srivatsa Vaddagiri wrote:
> On Fri, Mar 09, 2007 at 01:38:19AM +0100, Herbert Poetzl wrote:
> > > 2) you allow a task to selectively reshare namespaces/subsystems with
> > >    another task, i.e. you can update current->task_proxy to point to
> > >    a proxy that matches your existing task_proxy in some ways and the
> > >    task_proxy of your destination in others. In that case a trivial
> > >    implementation would be to allocate a new task_proxy and copy some
> > >    pointers from the old task_proxy and some from the new. But then
> > >    whenever a task moves between different groupings it acquires a
> > >    new unique task_proxy. So moving a bunch of tasks between two
> > >    groupings, they'd all end up with unique task_proxy objects with
> > >    identical contents.

> > this is exactly what Linux-VServer does right now, and I'm
> > still not convinced that the nsproxy really buys us anything
> > compared to a number of different pointers to various spaces
> > (located in the task struct)

> Are you saying that the current scheme of storing pointers to
> different spaces (uts_ns, ipc_ns etc) in nsproxy doesn't buy
> anything?

> Or are you referring to storage of pointers to resource 
> (name)spaces in nsproxy doesn't buy anything?

> In either case, doesn't it buy speed and storage space?

let's do a few examples here, just to illustrate the
advantages and disadvantages of nsproxy as separate
structure over nsproxy as part of the task_struct

1) typical setup, 100 guests as shell servers, 5
   tasks each when unused, 10 tasks when used 10%
   used in average

   a) separate nsproxy, we need at least 100
      structs to handle that (saves some space)

      we might end up with ~500 nsproxies, if
      the shell clones a new namespace (so might
      not save that much space)

      we do a single inc/dec when the nsproxy
      is reused, but do the full N inc/dec when

Page 1 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=206
https://new-forum.openvz.org/index.php?t=rview&th=3454&goto=17676#msg_17676
https://new-forum.openvz.org/index.php?t=post&reply_to=17676
https://new-forum.openvz.org/index.php


      we have to copy an nsproxy (might save
      some refcounting)

      we need to do the indirection step, from
      task to nsproxy to space (and data)

   b) we have ~600 tasks with 600 times the
      nsproxy data (uses up some more space)

      we have to do the full N inc/dev when
      we create a new task (more refcounting)

      we do not need to do the indirection, we
      access spaces directly from the 'hot'
      task struct (makes hot pathes quite fast)

   so basically we trade a little more space and
   overhead on task creation for having no 
   indirection to the data accessed quite often
   throughout the tasks life (hopefully)

2) context migration: for whatever reason, we decide
   to migrate a task into a subset (space mix) of a
   context 1000 times

   a) separate nsproxy, we need to create a new one
      consisting of the 'new' mix, which will

      - allocate the nsproxy struct
      - inc refcounts to all copied spaces
      - inc refcount nsproxy and assign to task
      - dec refcount existing task nsproxy

      after task completion
      - dec nsproxy refcount
      - dec refcounts for all spaces      
      - free up nsproxy struct

   b) nsproxy data in task struct

      - inc/dec refcounts to changed spaces

      after task completion
      - dec refcounts to spaces

   so here we gain nothing with the nsproxy, unless
   the chosen subset is identical to the one already
   used, where we end up with a single refcount 

Page 2 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php


   instead of N 

> > I'd prefer to do accounting (and limits) in a very simple
> > and especially performant way, and the reason for doing
> > so is quite simple:

> Can you elaborate on the relationship between data structures
> used to store those limits to the task_struct?                                

sure it is one to many, i.e. each task points to
exactly one context struct, while a context can
consist of zero, one or many tasks (no back- 
pointers there)

> Does task_struct store pointers to those objects directly?

it contains a single pointer to the context struct, 
and that contains (as a substruct) the accounting
and limit information

HTC,
Herbert

> -- 
> Regards,
> vatsa
> _______________________________________________
> Containers mailing list
> Containers@lists.osdl.org
> https://lists.osdl.org/mailman/listinfo/containers
_______________________________________________
Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Page 3 of 3 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

