Subject: Re: [PATCH 0/2] resource control file system - aka containers on top of
nsproxy!
Posted by Srivatsa Vaddagiri on Thu, 08 Mar 2007 18:13:53 GMT

View Forum Message <> Reply to Message

On Wed, Mar 07, 2007 at 11:00:31PM +0530, Srivatsa Vaddagiri wrote:
> > |'d like to see that. | suspect it will be a bit more fiddly than the

> > simple cpu_acct subsystem.

>

> | am almost done with the conversion. And yes cpuset is a beast to

> convert over! Will test and send the patches out tomorrow.

Ok ..I am not in a state yet where | can post the patches to Ikml in the
usual conventions (breaking down neatly/good documentation etc). But |
do have something which seems to work! | could mount cpuset as:

mount -t rcfs -ocpuset none cpuset
cd cpuset

mkdir a

cd a

cat tasks # shows nothing

echo 7 > cpus

echo 0 > mems

echo 1 > cpu_exclusive

echo some_pid > tasks

cat tasks # shows some_pid

top now shows some_pid running on CPU7, as expected :)

Instead of the usual convention of inlining patches and sending them in
separate mails, | am sending all of them as attachments (beware, bugs around!).
But this gives you an idea on which direction this is proceeding ..

Todo:

- Introduce refcounting of resource objects (get/put_res_ns)
- rmdir needs to check resource object refcount rather than
NSProxy's
- Trace couple of other lockdep warnings | have hit

Patches attached.

Regards,
vatsa

Page 1 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=667
https://new-forum.openvz.org/index.php?t=rview&th=3454&goto=17625#msg_17625
https://new-forum.openvz.org/index.php?t=post&reply_to=17625
https://new-forum.openvz.org/index.php

linux-2.6.20-vatsa/include/linux/init_task.h | 11
linux-2.6.20-vatsa/include/linux/nsproxy.h | 11

linux-2.6.20-vatsa/init/Kconfig | 22
linux-2.6.20-vatsa/init/main.c | 3
linux-2.6.20-vatsa/kernel/Makefile | 1

linux-2.6.20.1-vatsa/include/linux/init_task.h | 11
linux-2.6.20.1-vatsa/include/linux/nsproxy.h | 11

linux-2.6.20.1-vatsa/include/linux/rcfs.h | 76 +
linux-2.6.20.1-vatsa/init/Kconfig | 22

linux-2.6.20.1-vatsa/init/main.c | 3

linux-2.6.20.1-vatsa/kernel/Makefile | 1
linux-2.6.20.1-vatsa/kernel/nsproxy.c | 65+
linux-2.6.20.1-vatsa/kernel/rcfs.c | 1202 ++++++++++++++++++++H++H+H++

8 files changed, 1391 insertions(+)

diff -puN include/linux/init_task.h~rcfs include/linux/init_task.h

--- linux-2.6.20.1/include/linux/init_task.h~rcfs 2007-03-08 21:21:33.000000000 +0530
+++ linux-2.6.20.1-vatsa/include/linux/init_task.h 2007-03-08 21:21:34.000000000 +0530
@@ -71,6 +71,16 @@

}

extern struct nsproxy init_nsproxy;
+
+#ifdef CONFIG_RCFS
+#define INIT_RCFS(nsproxy) \
+ .list =LIST_HEAD_INIT(nsproxy.list), \
+ .ctlr_data ={[0 ... CONFIG_MAX_RC_SUBSYS-1]=NULL},
+#else
+#define INIT_RCFS(nsproxy)
+#endif
+
+
#define INIT_NSPROXY (nsproxy) { \
.pid_ns = &init_pid_ns, \
.count = ATOMIC_INIT(2), \
@@ -78,6 +88,7 @@ extern struct nsproxy init_nsproxy;
.uts_ns = &init_uts_ns, \
.mnt_ns = NULL, \
INIT_IPC_NS(ipc_ns) \
+ INIT_RCFS(nsproxy) \
}

Page 2 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

#define INIT_SIGHAND(sighand) { \
diff -puN include/linux/nsproxy.h~rcfs include/linux/nsproxy.h
--- linux-2.6.20.1/include/linux/nsproxy.h~rcfs 2007-03-08 21:21:33.000000000 +0530
+++ linux-2.6.20.1-vatsa/include/linux/nsproxy.h 2007-03-08 21:21:34.000000000 +0530
@@ -28,6 +28,10 @@ struct nsproxy {
struct ipc_namespace *ipc_ns;
struct mnt_namespace *mnt_ns;
struct pid_namespace *pid_ns;
+#ifdef CONFIG_RCFS
+ struct list_head list;
+ void *ctlr_data|[CONFIG_MAX_ RC_SUBSYS];
+#endif
I3

extern struct nsproxy init_nsproxy;

@@ -35,6 +39,13 @@ struct nsproxy *dup_namespaces(struct ns
int copy_namespaces(int flags, struct task_struct *tsk);
void get_task_namespaces(struct task_struct *tsk);
void free_nsproxy(struct nsproxy *ns);

+#ifdef CONFIG_RCFS

+struct nsproxy *find_nsproxy(struct nsproxy *ns);

+int namespaces_init(void);

+int nsproxy_task_count(void *data, int idx);

+#else

+static inline int namespaces _init(void) { return 0;}
+#endif

static inline void put_nsproxy(struct nsproxy *ns)

{

diff -puN /dev/null include/linux/rcfs.h

--- /dev/null 2007-03-08 22:46:54.325490448 +0530

+++ linux-2.6.20.1-vatsa/include/linux/rcfs.h 2007-03-08 21:21:34.000000000 +0530
@@ -0,0+1,76 @@

+#ifndef _LINUX_RCFS_H

+#define _LINUX_RCFS_H

+

+#ifdef CONFIG_RCFS

+

+/* struct cftype:

+ *

+ * The files in the container filesystem mostly have a very simple read/write
+ * handling, some common function will take care of it. Nevertheless some cases
+ * (read tasks) are special and therefore | define this structure for every

+ * kind of file.

+ *

+ *

+ * When reading/writing to a file:

+ * - the container to use in file->f_dentry->d_parent->d_fsdata

Page 3 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ * - the 'cftype’ of the file is file->f_dentry->d_fsdata

+*/

+

+struct inode;

+#define MAX_CFTYPE_NAME 64

+struct cftype {

+ /* By convention, the name should begin with the name of the
+ * subsystem, followed by a period */

+ char name[MAX_CFTYPE_NAME],

+ int private;

+ int (*open) (struct inode *inode, struct file *file);

+ ssize_t (*read) (struct nsproxy *ns, struct cftype *cft,

+ struct file *file,

+ char __user *buf, size_t nbytes, loff_t *ppos);

+ ssize_t (*write) (struct nsproxy *ns, struct cftype *cft,

+ struct file *file,

+ const char __user *buf, size_t nbytes, loff t *ppos);

+ int (*release) (struct inode *inode, struct file *file);

+};

+

+/* resource control subsystem type. See Documentation/rcfs.txt for details */
+

+struct rc_subsys {

+ int (*create)(struct rc_subsys *ss, struct nsproxy *ns,

+ struct nsproxy *parent);

+ void (*destroy)(struct rc_subsys *ss, struct nsproxy *ns);
+ int (*can_attach)(struct rc_subsys *ss, struct nsproxy *ns,
+ struct task_struct *tsk);

+ void (*attach)(struct rc_subsys *ss, struct nsproxy *new,
+ struct nsproxy *old, struct task_struct *tsk);

+ int (*populate)(struct rc_subsys *ss, struct dentry *d);

+ int subsys _id;

+ int active;

+

+#define MAX_CONTAINER_TYPE_NAMELEN 32

+ const char *name;

+

+ /* Protected by RCU */

+ int hierarchy;

+

+ struct list_head sibling;

+};

+

+int rc_register_subsys(struct rc_subsys *subsys);

+/* Add a new file to the given container directory. Should only be
+ * called by subsystems from within a populate() method */
+int rcfs_add_file(struct dentry *d, const struct cftype *cft);
+extern int rcfs_init(void);

Page 4 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+extern void rcfs_manage_lock(void);
+extern void rcfs_manage_unlock(void);
+extern int rcfs_dir_removed(struct dentry *d);
+extern int rcfs_path(struct dentry *d, char *buf, int len);
+
+#else
+
+static inline int rcfs_init(void) { return O; }
+
+#endif
+
+
+#endif
diff -puN init/Kconfig~rcfs init/Kconfig
--- linux-2.6.20.1/init/Kconfig~rcfs 2007-03-08 21:21:33.000000000 +0530
+++ linux-2.6.20.1-vatsa/init/Kconfig 2007-03-08 22:47:50.000000000 +0530
@@ -238,6 +238,28 @@ config IKCONFIG_PROC
This option enables access to the kernel configuration file
through /proc/config.gz.

+config RCFS

+ bool "Resource control file system support”

+ default n

+ help

+ This option will let you create and manage resource containers,
which can be used to aggregate multiple processes, e.g. for
the purposes of resource tracking.

Say N if unsure

+ + + + +

+config MAX_RC_SUBSYS
+ int "Number of resource control subsystems to support”
+ depends on RCFS

+ range 1 255

+ default 8

+

+config MAX_RC_HIERARCHIES
+ int "Number of rcfs hierarchies to support"
+ depends on RCFS
+ range 2 255
+ default 4
+
config CPUSETS
bool "Cpuset support”
depends on SMP
diff -puN init/main.c~rcfs init/main.c
--- linux-2.6.20.1/init/main.c~rcfs 2007-03-08 21:21:33.000000000 +0530
+++ linux-2.6.20.1-vatsa/init/main.c 2007-03-08 21:21:34.000000000 +0530

Page 5 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -52,6 +52,7 @@

#include <linux/lockdep.h>
#include <linux/pid_namespace.h>
#include <linux/device.h>
+#include <linux/rcfs.h>

#include <asm/io.h>

#include <asm/bugs.h>

@@ -512,6 +513,7 @@ asmlinkage void __init start_kernel(void
setup_per_cpu_areas();
smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */

+ namespaces_init();

/*

* Set up the scheduler prior starting any interrupts (such as the

* timer interrupt). Full topology setup happens at smp_init()
@@ -578,6 +580,7 @@ asmlinkage void __init start_kernel(void

}
#endif

vfs_caches_init_early();
+ rcfs_init();

cpuset_init_early();

mem_init();

kmem_cache_init();
diff -puN kernel/Makefile~rcfs kernel/Makefile
--- linux-2.6.20.1/kernel/Makefile~rcfs 2007-03-08 21:21:34.000000000 +0530
+++ linux-2.6.20.1-vatsa/kernel/Makefile 2007-03-08 22:47:50.000000000 +0530
@@ -50,6 +50,7 @@ obj-$(CONFIG_RELAY) +=relay.o
0bj-$(CONFIG_UTS_NS) += utsname.o
0bj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o
0bj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o
+0bj-$(CONFIG_RCFS) +=rcfs.o

ifneq ($(CONFIG_SCHED_NO_NO_OMIT_FRAME_POINTER),y)

According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is
diff -puN kernel/nsproxy.c~rcfs kernel/nsproxy.c

--- linux-2.6.20.1/kernel/nsproxy.c~rcfs 2007-03-08 21:21:34.000000000 +0530

+++ linux-2.6.20.1-vatsa/kernel/nsproxy.c 2007-03-08 22:54:04.000000000 +0530

@@ -23,6 +23,11 @@
struct nsproxy init_nsproxy = INIT_NSPROXY (init_nsproxy);

+#ifdef CONFIG_RCFS

+static LIST_HEAD(nslisthead);

+static DEFINE_SPINLOCK(nslistlock);

+#endif

+

static inline void get_nsproxy(struct nsproxy *ns)

Page 6 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

{
atomic_inc(&ns->count);
@@ -71,6 +76,12 @@ struct nsproxy *dup_namespaces(struct ns
get_pid_ns(ns->pid_ns);
}

+#ifdef CONFIG_RCFS
+ spin_lock_irg(&nslistlock);
+ list_add(&ns->list, &nslisthead);
+ spin_unlock_irqg(&nslistlock);
+#endif
+

return ns;

}

@@ -145,5 +156,59 @@ void free_nsproxy(struct nsproxy *ns)
put_ipc_ns(ns->ipc_ns);
if (ns->pid_ns)
put_pid_ns(ns->pid_ns);
+#ifdef CONFIG_RCFS
+ spin_lock_irg(&nslistlock);
+ list_del(&ns->list);
+ spin_unlock_irq(&nslistlock);
+#endif
kfree(ns);
}
+
+#ifdef CONFIG_RCFS
+struct nsproxy *find_nsproxy(struct nsproxy *target)

+

+ struct nsproxy *ns;
+inti=0;

+

+ spin_lock_irg(&nslistlock);
+ list_for_each_entry(ns, &nslisthead, list) {
for (i= 0; i < CONFIG_MAX_RC_SUBSYS; ++i)
if (ns->ctlr_datal[i] != target->ctlr_data[i])
break;

+

+

+

+

+ if (== CONFIG_MAX_RC_SUBSYS) {
+ /*Found a hit */

+ get_nsproxy(ns);

+ spin_unlock(&nslistlock);

+ return ns;

+
+
+

}
}

+ spin_unlock_irq(&nslistlock);

Page 7 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+

+ ns = dup_namespaces(target);

+ return ns;

+}

+

+int __init namespaces_init(void)

+

+ list_add(&init_nsproxy.list, &nslisthead);
+

+ return O;

+}

+

+int nsproxy_task_count(void *data, int idx)
+

+ int count = 0O;

+ struct nsproxy *ns;

+ unsigned long flags;

+

+ spin_lock_irgsave(&nslistlock, flags);

+ list_for_each_entry(ns, &nslisthead, list)
+ if (ns->ctlr_data[idx] == data)

+ count += atomic_read(&ns->count);

+ spin_unlock_irgrestore(&nslistlock, flags);
+

+ return count;

+}

+#endif

diff -puN /dev/null kernel/rcfs.c

--- /dev/null 2007-03-08 22:46:54.325490448 +0530

+++ linux-2.6.20.1-vatsa/kernel/rcfs.c 2007-03-08 22:35:23.000000000 +0530

@@ -0,0+1,1202 @@

+/*

+* kernel/rcfs.c

+ *

+ * Generic resource container system.

+ * Based originally on the cpuset system, extracted by Paul Menage
+ * Copyright (C) 2006 Google, Inc

+ * Copyright notices from the original cpuset code:

+ * Copyright (C) 2003 BULL SA.
+ * Copyright (C) 2004-2006 Silicon Graphics, Inc.

+ * Portions derived from Patrick Mochel's sysfs code.
+ * sysfs is Copyright (c) 2001-3 Patrick Mochel

+* 2003-10-10 Written by Simon Detrr.

Page 8 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+* 2003-10-22 Updates by Stephen Hemminger.
+* 2004 May-July Rework by Paul Jackson.

+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file COPYING in the main directory of the Linux
+ * distribution for more detalils.
+ */

+

+#include <linux/cpu.h>
+#include <linux/cpumask.h>
+#include <linux/err.h>
+#include <linux/errno.h>
+#include <linux/file.h>
+#include <linux/fs.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/kmod.h>
+#include <linux/list.h>
+#include <linux/mempolicy.h>
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/mount.h>
+#include <linux/namei.h>
+#include <linux/pagemap.h>
+#include <linux/proc_fs.h>
+#include <linux/rcupdate.h>
+#include <linux/sched.h>
+#include <linux/seq_file.h>
+#include <linux/security.h>
+#include <linux/slab.h>
+#include <linux/smp_lock.h>
+#include <linux/spinlock.h>
+#include <linux/stat.h>
+#include <linux/string.h>
+#include <linux/time.h>
+#include <linux/backing-dev.h>
+#include <linux/sort.h>
+#include <linux/nsproxy.h>
+#include <linux/rcfs.h>

+

+#include <asm/uaccess.h>
+#include <asm/atomic.h>
+#include <linux/mutex.h>

+

+#define RCFS_SUPER_MAGIC 0x27e0eb
+

Page 9 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+/* A rcfs_root represents the root of a resource control hierarchy,
+ * and may be associated with a superblock to form an active

+ * hierarchy */

+struct rcfs_root {

+ struct super_block *sb;

+

+ /* The bitmask of subsystems attached to this hierarchy */

+ unsigned long subsys_bits;

+

+ /* A list running through the attached subsystems */

+ struct list_head subsys_list;

+};

+

+static DEFINE_MUTEX(manage_mutex);

+

+/* The set of hierarchies in use */

+static struct rcfs_root rootnode[CONFIG_MAX_ RC_HIERARCHIES];
+

+static struct rc_subsys *subsys[CONFIG_MAX_ RC_SUBSYS];
+static int subsys _count = 0;

+

+/* for_each_subsys() allows you to act on each subsystem attached to
+ * an active hierarchy */

+#define for_each_subsys(root, _ss) \

+list_for_each_entry(_ss, &root->subsys_list, sibling)

+

+/* Does a container directory have sub-directories under it ? */
+static int dir_empty(struct dentry *dentry)

gl

+ struct dentry *d;
+intrc=1;

+

+ spin_lock(&dcache_lock);

+ list_for_each_entry(d, &dentry->d_subdirs, d_u.d_child) {
+ if (S_ISDIR(d->d_inode->i_mode)) {

+ rc=0;

+ break;

+}

+}

+ spin_unlock(&dcache_lock);

+

+ return rc;

+}

+

+static int rebind_subsystems(struct rcfs_root *root, unsigned long final_bits)
+

+ unsigned long added_bits, removed_bits;

+ int i, hierarchy;

Page 10 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+
+ removed_bits = root->subsys_bits & ~final_bits;
+ added_bits = final_bits & ~root->subsys_bits;
+ /* Check that any added subsystems are currently free */
+ for (i = 0; i < subsys_count; i++) {
+ unsigned long long bit = 1ull << i;
struct rc_subsys *ss = subsysi];

+

+

+ if (/(bit & added_bits))

+ continue;

+ if (ss->hierarchy != 0) {

+ [* Subsystem isn't free */
+ return -EBUSY;

+
+
+

}
}

+ /* Currently we don't handle adding/removing subsystems when
+ * any subdirectories exist. This is theoretically supportable
+ * but involves complex erro r handling, so it's being left until
+ *later */

+ [*

+ if (!dir_empty(root->sh->s_root))

+ return -EBUSY;

+ */

+

+ hierarchy = rootnode - root;

+

+ /* Process each subsystem */

+ for (i=0; i < subsys_count; i++) {

+ struct rc_subsys *ss = subsysi];

+ unsigned long bit = 1UL <<,

+ if (bit & added_hits) {

+ /[* We're binding this subsystem to this hierarchy */
+ list_add(&ss->sibling, &root->subsys_list);

+ rcu_assign_pointer(ss->hierarchy, hierarchy);

+ } else if (bit & removed_bits) {

+ /[* We're removing this subsystem */

+ rcu_assign_pointer(subsysJi]->hierarchy, 0);

+ list_del(&ss->sibling);

+ }

+}

+ root->subsys_bits = final_bits;

+ synchronize_rcu(); /* needed ? */

+

+ return O;

+}

+

+/*

Page 11 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ * Release the last use of a hierarchy. Will never be called when
+ * there are active subcontainers since each subcontainer bumps the
+ * value of sh->s_active.

+ */

+static void rcfs_put_super(struct super_block *sb) {

+

+ struct rcfs_root *root = sb->s_fs_info;

+ int ret;

+

+ mutex_lock(&manage_mutex);

+

+ BUG_ON('root->subsys_bits);

+

+ /* Rebind all subsystems back to the default hierarchy */

+ ret = rebind_subsystems(root, 0);

+ root->sb = NULL;

+ sb->s_fs_info = NULL;

+

+ mutex_unlock(&manage_mutex);

+}

+

+static int rcfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
gl

+ struct rcfs_root *root = vfs->mnt_sb->s_fs _info;

+ struct rc_subsys *ss;

+

+ for_each_subsys(root, ss)

+ seq_printf(seq, ",%s", ss->name);

+

+ return O;

+}

+

+/* Convert a hierarchy specifier into a bitmask. LL=manage_mutex */
+static int parse_rcfs_options(char *opts, unsigned long *bits)

H

+ char *token, *o = opts ?: "all";
+

+ *bits = 0;

+

+ while ((token = strsep(&o, ",")) '= NULL) {
+ if (I*token)

+ return -EINVAL,

if (!strcmp(token, "all")) {

*bits = (1 << subsys_count) - 1;

} else {

struct rc_subsys *ss;

inti;

+
+
+
+
+
+ for (i = 0; i < subsys_count; i++) {

Page 12 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

ss = subsysi];

if (Istrcmp(token, ss->name)) {
*bits |= 1 << i;

break;

+
+
+
+
+ }

+ }

+ if (i == subsys_count)

+ return -ENOENT;

+)

+}

+

+ /* We can't have an empty hierarchy */

+ if ("*bits)

+ return -EINVAL;

+

+return O;

+}

+

+static struct backing_dev_info rcfs_backing_dev_info = {

+.ra_pages = 0, /* No readahead */

+ .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
+};

+

+static struct inode *rcfs_new_inode(mode_t mode, struct super_block *sb)
gl

+ struct inode *inode = new_inode(sh);

+

+if (inode) {

+ inode->i_mode = mode;

inode->i_uid = current->fsuid;

inode->i_gid = current->fsgid;

inode->i_blocks = 0;

inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT _TIME;
+ inode->i_mapping->backing_dev_info = &rcfs_backing_dev_info;

+)

+ return inode;

+}

+

+static struct super_operations rcfs_sb_ops = {

+ .statfs = simple_statfs,

+ .drop_inode = generic_delete_inode,

+ .put_super = rcfs_put_super,

+ .show_options = rcfs_show_options,

+ //.remount_fs = rcfs_remount,

+};

+

+static struct inode_operations rcfs_dir_inode_operations;

+static int rcfs_create_dir(struct nsproxy *ns, struct dentry *dentry,

+ 4+ + +

Page 13 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ int mode);

+static int rcfs_populate_dir(struct dentry *d);

+static void rcfs_d_remove_dir(struct dentry *dentry);

+

+static int rcfs_fill_super(struct super_block *sb, void *options,
+ intunused_silent)

+

+ struct inode *inode;

+ struct dentry *root;

+ struct rcfs_root *hroot = options;

+

+ sb->s_blocksize = PAGE_CACHE_SIZE;

+ sb->s_blocksize_bits = PAGE_CACHE_SHIFT;

+ sb->s_magic = RCFS_SUPER_MAGIC;

+ sb->s_op = &rcfs_sb_ops;

+

+ inode = rcfs_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
+ if (linode)

+ return -ENOMEM,;

+

+ inode->i_op = &simple_dir_inode_operations;

+ inode->i_fop = &simple_dir_operations;

+ inode->i_op = &rcfs_dir_inode_operations;

+ /* directories start off with i_nlink == 2 (for "." entry) */
+ inc_nlink(inode);

+
+ root = d_alloc_root(inode);
+if (Iroot) {

+ iput(inode);

+ return -ENOMEM;

+}

+ sb->s_root = root;

+ get_task_namespaces(&init_task);

+ root->d_fsdata = init_task.nsproxy;

+ sb->s_fs_info = hroot;

+ hroot->sb = sb;

+

+return O;

+}

+

+static inline struct nsproxy * __d_ns(struct dentry *dentry)
H

+ return dentry->d_fsdata;

+}

+

+

+static inline struct cftype *__d_cft(struct dentry *dentry)

H

Page 14 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ return dentry->d_fsdata;

+}

+

+/* Count the number of tasks in a container. Could be made more

+ * time-efficient but less space-efficient with more linked lists

+ * running through each container and the container_group structures
+ * that referenced it. */

+

+int rcfs_task_count(struct dentry *d)
gl

+ struct nsproxy *ns = __d_ns(d);

+ struct rc_subsys *ss;

+ struct rcfs_root *root = d->d_sb->s_fs_info;

+int count;

+

+ ss = list_entry(root->subsys_list.next, struct rc_subsys, sibling);

+ count = nsproxy_task_count(ns->ctlr_data[ss->subsys_id], ss->subsys_id);
+

+ return count;

+}

+

+/*

+ * Stuff for reading the 'tasks' file.

+ *

+ * Reading this file can return large amounts of data if a container has
+ * *|lots* of attached tasks. So it may need several calls to read(),

+ * but we cannot guarantee that the information we produce is correct
+ * unless we produce it entirely atomically.

+ *

+ * Upon tasks file open(), a struct ctr_struct is allocated, that

+ * will have a pointer to an array (also allocated here). The struct

+ * ctr_struct * is stored in file->private_data. Its resources will

+ * be freed by release() when the file is closed. The array is used

+ * to sprintf the PIDs and then used by read().

+ */

+

+/* containers_tasks_read array */

+

+struct ctr_struct {

+ char *buf;

+ int bufsz;

+};

+

+/*

+ * Load into 'pidarray' up to 'npids' of the tasks using container

+ *'cont’. Return actual number of pids loaded. No need to

+ * task_lock(p) when reading out p->container, since we're in an RCU
+ * read section, so the container_group can't go away, and is

Page 15 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ * immutable after creation.

+*/

+static int pid_array_load(pid_t *pidarray, int npids, struct dentry *d)
gl

+intn =0, idx;

+ struct task_struct *g, *p;

+ struct nsproxy *ns = d_ns(d);

+ struct rc_subsys *ss;

+ struct rcfs_root *root = d->d_sb->s_fs_info;

+

+ rcu_read_lock();

+ read_lock(&tasklist_lock);

+

+ ss = list_entry(root->subsys_list.next, struct rc_subsys, sibling);
+ idx = ss->subsys id;

+

+ do_each_thread(g, p) {

+ if (p->nsproxy->ctlr_data[idx] == ns->ctlr_data[idx]) {

+ pidarray[n++] = pid_nr(task_pid(p));

+ if (unlikely(n == npids))

+ goto array_full;

+ }

+ } while_each_thread(qg, p);

+

+array_full:

+ read_unlock(&tasklist_lock);

+ rcu_read_unlock();

+ return n;

+}

+

+static int cmppid(const void *a, const void *b)

H

+ return *(pid_t *)a - *(pid_t *)b;

+}

+

+/*

+ * Convert array 'a’ of 'npids' pid_t's to a string of newline separated
+ * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
+ * count ‘cnt’ of how many chars would be written if buf were large enough.
+ */

+static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
gl

+intcnt = 0;

+inti;

+

+ for (i = O0; i < npids; i++)

+ cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", ali]);

+ return cnt;

Page 16 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+}
+

+/*

+ * Handle an open on 'tasks' file. Prepare a buffer listing the

+ * process id's of tasks currently attached to the container being opened.
+ *

+ * Does not require any specific container mutexes, and does not take any.
+ */

+static int rcfs_tasks_open(struct inode *unused, struct file *file)

gl

+ struct ctr_struct *ctr;

+ pid_t *pidarray;

+ int npids;

+ char c;

+

+if (!(file->f_mode & FMODE_READ))

+ return O;

+

+ ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);

+if (‘ctr)

+ goto err0;

+

+ [*

+ * If container gets more users after we read count, we won't have
+ * enough space - tough. This race is indistinguishable to the

+ * caller from the case that the additional container users didn't

+ * show up until sometime later on.

+ */

+ npids = rcfs_task_count(file->f_dentry->d_parent);

+ pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);

+ if (pidarray)

+ goto errl;

+

+ npids = pid_array_load(pidarray, npids, file->f_dentry->d_parent);
+ sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);

+

+ /* Call pid_array_to_buf() twice, first just to get bufsz */

+ ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1,
+ ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);

+ if (Ictr->buf)

+ goto err2;

+ ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
+

+ kfree(pidarray);

+ file->private_data = ctr;

+ return O;

+

+err2:

Page 17 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ kfree(pidarray);

+errl:

+ kfree(ctr);

+err0:

+ return -ENOMEM,;

+}

+

+static ssize_t rcfs_tasks_read(struct nsproxy *ns,
+ struct cftype *cft,

+ struct file *file, char __user *buf,

+ size_t nbytes, loff_t *ppos)

gl

+ struct ctr_struct *ctr = file->private_data;

+

+ if (*ppos + nbytes > ctr->bufsz)

+ nbytes = ctr->bufsz - *ppos;

+ if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
+ return -EFAULT;

+ *ppos += nbytes;

+ return nbytes;

+}

+

+static int rcfs_tasks_release(struct inode *unused_inode, struct file *file)
H

+ struct ctr_struct *ctr;

+

+ if (file->f_mode & FMODE_READ) {

+ ctr = file->private_data;

+ kfree(ctr->buf);

+ kfree(ctr);

+}

+ return O;

+}

+/*

+ * Attach task 'tsk' to container ‘cont’

+ *

+ * Call holding manage_mutex. May take callback_mutex and task_lock of
+ * the task 'pid' during call.

+ */

+

+static int attach_task(struct dentry *d, struct task_struct *tsk)
gl

+ int retval = 0;

+ struct rc_subsys *ss;

+ struct rcfs_root *root = d->d_sb->s_fs_info;

+ struct nsproxy *ns = __d_ns(d->d_parent);

+ struct nsproxy *oldns, *newns;

+ struct nsproxy dupns;

Page 18 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+

+ printk ("attaching task %d to %p \n", tsk->pid, ns);

+

+ /* Nothing to do if the task is already in that container */
+ if (tsk->nsproxy == ns)

+ return O;

+

+ for_each_subsys(root, ss) {

+ if (ss->can_attach) {

+ retval = ss->can_attach(ss, ns, tsk);
+ if (retval) {

+ put_task_struct(tsk);

+ return retval;
+
+
+
+

}
}
}

+ /* Locate or allocate a new container_group for this task,
+ * based on its final set of containers */

+ get_task _namespaces(tsk);

+ oldns = tsk->nsproxy;

+ memcpy(&dupns, oldns, sizeof(dupns));

+ for_each_subsys(root, ss)

+ dupns.ctlr_data[ss->subsys_id] = ns->ctlr_data[ss->subsys_id];
+ newns = find_nsproxy(&dupns);

+ printk ("find_nsproxy returned %p \n", newns);

+if ('Inewns) {

+ put_nsproxy(tsk->nsproxy);

+ put_task_struct(tsk);

+ return -ENOMEM;

+}
+

+ task_lock(tsk); /* Needed ? */

+ rcu_assign_pointer(tsk->nsproxy, newns);
+ task_unlock(tsk);

+

+ for_each_subsys(root, ss) {

+ if (ss->attach)

+ ss->attach(ss, newns, oldns, tsk);
+}

+

+ synchronize_rcu();

+ put_nsproxy(oldns);

+ return O;

+}

+

+

+/*

Page 19 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ * Attach task with pid 'pid' to container 'cont’. Call with

+ * manage_mutex, may take callback_mutex and task_lock of task
+ *

+ */

+

+static int attach_task by pid(struct dentry *d, char *pidbuf)
+

+ pid_t pid;

+ struct task_struct *tsk;

+ int ret;

+

+ if (sscanf(pidbuf, "%d", &pid) != 1)

+ return -EIO;

+

+ if (pid) {

+ read_lock(&tasklist_lock);

+

+ tsk = find_task_by pid(pid);

+ if (tsk || tsk->flags & PF_EXITING) {
+ read_unlock(&tasklist_lock);

+ return -ESRCH;

+}

+

+ get_task_struct(tsk);

+ read_unlock(&tasklist_lock);

+

+ if ((current->euid) && (current->euid = tsk->uid)
+ && (current->euid != tsk->suid)) {
+ put_task_struct(tsk);

+ return -EACCES;

+}

+} else {

+ tsk = current;

+ get_task_struct(tsk);

+)

+

+ ret = attach_task(d, tsk);
+ put_task_struct(tsk);

+ return ret;

+}

+

+/* The various types of files and directories in a container file system */
+

+typedef enum {

+ FILE_ROOT,

+ FILE_DIR,

+ FILE_TASKLIST,

+} rcfs_filetype _t;

Page 20 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+

+static ssize_t rcfs_common_file_write(struct nsproxy *ns, struct cftype *cft,
+ struct file *file,

+ const char __user *userbuf,

+ size_t nbytes, loff_t *unused_ppos)
gl

+ rcfs_filetype_t type = cft->private;

+ char *buffer;

+ int retval = 0;

+

+ if (nbytes >= PATH_MAX)

+ return -E2BIG;

+

+ [* +1 for nul-terminator */

+ if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
+ return -ENOMEM,;

+

+ if (copy_from_user(buffer, userbuf, nbytes)) {
+ retval = -EFAULT;

+ goto outl,;

+}

+ buffer[nbytes] = 0; /* nul-terminate */

+

+ mutex_lock(&manage_mutex);

+

+ns = __d_ns(file->f_dentry);

+ if (Yatomic_read(&ns->count)) {

+ retval = -ENODEV;

+ goto out2;

+}

+

+ switch (type) {

+ case FILE_TASKLIST:

+ retval = attach_task_by pid(file->f_dentry, buffer);
+ break;

+ default:

+ retval = -EINVAL;

+ goto out2;

+}

+

+ if (retval == 0)

+ retval = nbytes;

+out2:

+ mutex_unlock(&manage_mutex);
+outl:

+ kfree(buffer);

+ return retval;

+}

Page 21 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+

+static struct cftype cft_tasks ={
.name = "tasks",

.open = rcfs_tasks_open,

.read = rcfs_tasks_read,

.write = rcfs_common_file_write,
.release = rcfs_tasks_release,
.private = FILE_TASKLIST,

+};

+

+static ssize_t rcfs_file_write(struct file *file, const char __user *buf,
+ size_t nbytes, loff_t *ppos)

+ 4+ + + + +

gl

+ struct cftype *cft = __ d_cft(file->f_dentry);

+ struct nsproxy *ns = __d_ns(file->f_dentry->d_parent);
+if (Icft)

+ return -ENODEV;,

+ if (Icft->write)

+ return -EINVAL;

+

+ return cft->write(ns, cft, file, buf, nbytes, ppos);

+}

+

+static ssize_t rcfs_file_read(struct file *file, char ___user *buf,
+ size_t nbytes, loff_t *ppos)

+

+ struct cftype *cft = __d_cft(file->f_dentry);

+ struct nsproxy *ns = __d_ns(file->f_dentry->d_parent);
+if (Icft)

+ return -ENODEV;

+ if (Icft->read)

+ return -EINVAL;

+

+ return cft->read(ns, cft, file, buf, nbytes, ppos);
+}

+

+static int rcfs_file_open(struct inode *inode, struct file *file)
H

+int err;

+ struct cftype *cft;

+

+ err = generic_file_open(inode, file);

+ if (err)

+ return err;

+

+ cft = __d_cft(file->f_dentry);

+if (Icft)

+ return -ENODEV;

Page 22 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ if (cft->open)

+ err = cft->open(inode, file);

+ else

+ err =0;

+

+ return err;

+)

+

+static int rcfs_file_release(struct inode *inode, struct file *file)
gl

+ struct cftype *cft = __ d_cft(file->f_dentry);

+ if (cft->release)

+ return cft->release(inode, file);

+return O;

+}

+

+/*

+ * rcfs_create - create a container

+ * parent: container that will be parent of the new container.
+ * name: name of the new container. Will be strcpy'ed.
+* mode: mode to set on new inode

+ *

+ * Must be called with the mutex on the parent inode held
+ */

+

+static long rcfs_create(struct nsproxy *parent, struct dentry *dentry,
+ int mode)

+

+ struct rcfs_root *root = dentry->d_sb->s_fs_info;

+interr =0;

+ struct rc_subsys *ss;

+ struct super_block *sb = dentry->d_sb;

+ struct nsproxy *ns;

+

+ ns = dup_namespaces(parent);

+if ('ns)

+ return -ENOMEM,;

+

+ printk ("rcfs_create: ns = %p \n", ns);
+

+ /* Grab a reference on the superblock so the hierarchy doesn't
+ * get deleted on unmount if there are child containers. This

+ * can be done outside manage_mutex, since the sb can't

+ * disappear while someone has an open control file on the

+ *fs*/

+ atomic_inc(&sb->s_active);

+

+ mutex_lock(&manage_mutex);

Page 23 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+

+ for_each_subsys(root, ss) {

+ err = ss->create(ss, ns, parent);

+ if (err) {

+ printk ("%s create failed \n", ss->name);

+ goto err_destroy;

+)

+}

+

+ err = rcfs_create_dir(ns, dentry, mode);

+if (err < 0)

+ goto err_destroy;

+

+ /* The container directory was pre-locked for us */

+ BUG_ON('mutex_is_locked(&dentry->d_inode->i_mutex));
+

+ err = rcfs_populate_dir(dentry);

+ /* If err < 0, we have a half-filled directory - oh well ;) */

+

+ mutex_unlock(&manage_mutex);

+ mutex_unlock(&dentry->d_inode->i_mutex);

+

+ return O;

+

+err_destroy:

+

+ for_each_subsys(root, ss)

+ ss->destroy(ss, ns);

+

+ mutex_unlock(&manage_mutex);

+

+ [* Release the reference count that we took on the superblock */
+ deactivate_super(sb);

+

+ free_nsproxy(ns);

+ return err;

+}

+

+static int rcfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
+

+ struct nsproxy *ns_parent = dentry->d_parent->d_fsdata;
+

+ printk ("rcfs_mkdir : parent_nsproxy = %p (%p) \n", ns_parent, dentry->d_fsdata);
+

+ /* the vfs holds inode->i_mutex already */

+ return rcfs_create(ns_parent, dentry, mode | S_IFDIR);
+}

+

Page 24 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+static int rcfs_rmdir(struct inode *unused_dir, struct dentry *dentry)
gl

+ struct nsproxy *ns = dentry->d_fsdata;

+ struct dentry *d;

+ struct rc_subsys *ss;

+ struct super_block *sb = dentry->d_sb;

+ struct rcfs_root *root = dentry->d_sb->s_fs_info;
+

+ /* the vfs holds both inode->i_mutex already */
+

+ mutex_lock(&manage_mutex);

+

+ if (atomic_read(&ns->count) > 1) {

+ mutex_unlock(&manage_mutex);

+ return -EBUSY;

+}

+

+ if (!dir_empty(dentry)) {

+ mutex_unlock(&manage _mutex);

+ return -EBUSY;

+}

+

+ atomic_set(&ns->count, 0);

+

+ for_each_subsys(root, ss)

+ ss->destroy(ss, ns);

+

+ spin_lock(&dentry->d_lock);

+ d = dget(dentry);

+ spin_unlock(&d->d_lock);

+

+rcfs_d_remove_dir(d);

+ dput(d);

+

+ mutex_unlock(&manage_mutex);

+ /* Drop the active superblock reference that we took when we
+ * created the container */

+ deactivate_super(sb);

+ return O;

+}

+

+static struct file_operations rcfs_file_operations = {
+ .read = rcfs_file_read,

+ .write = rcfs_file_write,

+ .llseek = generic_file_lIseek,

+ .open = rcfs_file_open,

+ .release = rcfs_file_release,

+};

Page 25 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+

+static struct inode_operations rcfs_dir_inode_operations = {
+ .lookup = simple_lookup,

+ .mkdir = rcfs_mkdir,

+ .rmdir = rcfs_rmdir,

+ //.rename = rcfs_rename,

+h

+

+static int rcfs_create_file(struct dentry *dentry, int mode,
+ struct super_block *sb)

+H

+ struct inode *inode;

+

+ if ('dentry)

+ return -ENOENT,;

+ if (dentry->d_inode)

+ return -EEXIST;

+

+ inode = rcfs_new_inode(mode, sbh);

+ if (linode)

+ return -ENOMEM,;

+

+if (S_ISDIR(mode)) {

+ inode->i_op = &rcfs_dir_inode_operations;

+ inode->i_fop = &simple_dir_operations;

+

+ [* start off with i_nlink == 2 (for "." entry) */

+ inc_nlink(inode);

+

+ [* start with the directory inode held, so that we can
+ * populate it without racing with another mkdir */

+ mutex_lock(&inode->i_mutex);

+} else if (S_ISREG(mode)) {

+ inode->i_size = 0;

+ inode->i_fop = &rcfs_file_operations;

+}

+

+ d_instantiate(dentry, inode);

+ dget(dentry); /* Extra count - pin the dentry in core */
+ return O;

+}

+

+/*

+ * rcfs_create_dir - create a directory for an object.

+ * cont: the container we create the directory for.

+ * It must have a valid ->parent field

+* And we are going to fill its ->dentry field.

+ * name: The name to give to the container directory. Will be copied.

Page 26 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ * mode: mode to set on new directory.

+*/

+

+static int rcfs_create_dir(struct nsproxy *ns, struct dentry *dentry,
+ int mode)

gl

+ struct dentry *parent;

+ int error = 0;

+

+ parent = dentry->d_parent;

+if (IS_ERR(dentry))

+ return PTR_ERR(dentry);

+ error = rcfs_create_file(dentry, S_IFDIR | mode, dentry->d_sb);
+if (Yerror) {

+ dentry->d_fsdata = ns;

+ inc_nlink(parent->d_inode);

+)

+ dput(dentry);

+

+ return error;

+}

+

+static void rcfs_diput(struct dentry *dentry, struct inode *inode)
H

+ /* is dentry a directory ? if so, kfree() associated container */
+ if (S_ISDIR(inode->i_mode)) {

+ struct nsproxy *ns = dentry->d_fsdata;

+

+ free_nsproxy(ns);

+ dentry->d_fsdata = NULL,;

+}

+ iput(inode);

+}

+

+static struct dentry_operations rcfs_dops ={

+.d_iput = rcfs_diput,

+};

+

+static struct dentry *rcfs_get_dentry(struct dentry *parent,

+ const char *name)

gl

+ struct dentry *d = lookup_one_len(name, parent, strlen(name));
+if (IS_ERR(d))

+ d->d_op = &rcfs_dops;

+ return d;

+}

+

+int rcfs_add_file(struct dentry *dir, const struct cftype *cft)

Page 27 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

H
+ struct dentry *dentry;
+ int error;
+
+ BUG_ON('mutex_is_locked(&dir->d_inode->i_mutex));
+ dentry = rcfs_get_dentry(dir, cft->name);
+if ('IS_ERR(dentry)) {
+ error = rcfs_create_file(dentry, 0644 | S_IFREG, dir->d_sb);
+ if (lerror)
+ dentry->d_fsdata = (void *)cft;
+ dput(dentry);
+} else
+ error = PTR_ERR(dentry);
+ return error;
+}
+
+static void remove_dir(struct dentry *d)
H
+ struct dentry *parent = dget(d->d_parent);
+
+ d_delete(d);
+ simple_rmdir(parent->d_inode, d);
+ dput(parent);
+}
+
+static void rcfs_clear_directory(struct dentry *dentry)
+
+ struct list_head *node;
+
+ BUG_ON('mutex_is_locked(&dentry->d_inode->i_mutex));
+ spin_lock(&dcache_lock);
+ node = dentry->d_subdirs.next;
+ while (node = &dentry->d_subdirs) {
+ struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
list_del_init(node);
if (d->d_inode) {
[* This should never be called on a container
* directory with child containers */
BUG_ON(d->d_inode->i_mode & S_IFDIR);
d = dget_locked(d);
spin_unlock(&dcache_lock);
d_delete(d);
simple_unlink(dentry->d_inode, d);
dput(d);
spin_lock(&dcache_lock);
}

+ node = dentry->d_subdirs.next;

+}

+ 4+ ++ A+ A+ +

Page 28 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ spin_unlock(&dcache_lock);

+}

+

+/*

+ * NOTE : the dentry must have been dget()'ed

+ */

+static void rcfs_d_remove_dir(struct dentry *dentry)
+

+ rcfs_clear_directory(dentry);

+

+ spin_lock(&dcache_lock);

+ list_del_init(&dentry->d_u.d_child);

+ spin_unlock(&dcache_lock);

+ remove_dir(dentry);

+}

+

+static int rcfs_populate_dir(struct dentry *d)

H

+int err;

+ struct rc_subsys *ss;

+ struct rcfs_root *root = d->d_sb->s_fs_info;

+

+ /* First clear out any existing files */

+ rcfs_clear_directory(d);

+

+ if ((err = rcfs_add_file(d, &cft_tasks)) < 0)

+ return err;

+

+ for_each_subsys(root, ss)

+ if (ss->populate && (err = ss->populate(ss, d)) < 0)
+ return err;

+

+ return O;

+}

+

+static int rcfs_get_sb(struct file_system_type *fs_type,
+ int flags, const char *unused_dev_name,
+ void *data, struct vfsmount *mnt)
H

+inti;

+ unsigned long subsys_bits = 0;

+intret = 0;

+ struct rcfs_root *root = NULL;

+

+ mutex_lock(&manage_mutex);

+

+ [* First find the desired set of resource controllers */
+ ret = parse_rcfs_options(data, &subsys_bits);

Page 29 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+if (ret)

+ goto out_unlock;

+

+ /* See if we already have a hierarchy containing this set */
+

+ for (i = 0; i < CONFIG_MAX_RC_HIERARCHIES; i++) {
+ root = &rootnodei];

+ /* We match - use this hieracrchy */

+ if (root->subsys_bits == subsys_bits) break;

+ [* We clash - fail */

+ if (root->subsys_bits & subsys_bits) {

+ ret =-EBUSY;

+ goto out_unlock;

+}

+}
+

+if (i == CONFIG_MAX_RC_HIERARCHIES) {

+ /* No existing hierarchy matched this set - but we

+ * know that all the subsystems are free */

+ for (i=0; i < CONFIG_MAX_RC_HIERARCHIES; i++) {
+ root = &rootnode(i];

+ if (froot->sb && !root->subsys_bits) break;

+

+

+

}
}

+if (i == CONFIG_MAX_RC_HIERARCHIES) {
+ ret = -ENOSPC,;

+ goto out_unlock;

+}

+

+ if (root->sb) {

+ BUG_ON(root->subsys_bits);

+ ret = get_sb_nodev(fs_type, flags, root,

+ rcfs_fill_super, mnt);

+ if (ret)

+ goto out_unlock;

+

+ ret = rebind_subsystems(root, subsys_bits);

+ BUG_ON(ret);

+

+ /* It's safe to nest i_mutex inside manage_mutex in
+ *this case, since no-one else can be accessing this
+ *directory yet */

+ mutex_lock(&root->sb->s_root->d_inode->i_mutex);
+ rcfs_populate_dir(root->sb->s_root);

+ mutex_unlock(&root->sb->s_root->d_inode->i_mutex);
+

+}else {

Page 30 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ /* Reuse the existing superblock */

+ ret = simple_set_mnt(mnt, root->sb);

+ if (Iret)

+ atomic_inc(&root->sb->s_active);

+)

+

+out_unlock:

+ mutex_unlock(&manage_mutex);

+ return ret;

+}

+

+static struct file_system_type rcfs_type ={
+ .name = "rcfs",

+ .get_sb =rcfs_get_sb,

+ .kill_sb = kill_litter_super,

+};

+

+int __init rcfs_init(void)

H

+inti, err;

+

+ for (i=0; i < CONFIG_MAX_RC_HIERARCHIES; ++i)
+ INIT_LIST_HEAD(&rootnode[i].subsys_list);
+

+ err = register_filesystem(&rcfs_type);

+

+ return err;

+}

+

+int rc_register_subsys(struct rc_subsys *new_subsys)
gl

+ int retval = 0;

+inti;

+int ss_id;

+

+ BUG_ON(new_subsys->hierarchy);

+ BUG_ON(new_subsys->active);

+

+ mutex_lock(&manage_mutex);

+

+ if (subsys_count == CONFIG_MAX_ RC_SUBSYS){
+ retval = -ENOSPC;

+ goto out;

+}
+

+ /* Sanity check the subsystem */
+ if ('new_subsys->name ||
+ (strlen(new_subsys->name) > MAX_CONTAINER_TYPE_NAMELEN) ||

Page 31 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ Inew_subsys->create || Inew_subsys->destroy) {
+ retval = -EINVAL;

+ goto out;

+}

+

+ /* Check this isn't a duplicate */

+ for (i = 0; i < subsys_count; i++) {

+ if (Istrcmp(subsys[i]->name, new_subsys->name)) {
+ retval = -EEXIST;

+ goto out;

+}

+}
+

+ /* Create the top container state for this subsystem */
+ss_id = new_subsys->subsys_id = subsys_count;

+ retval = new_subsys->create(new_subsys, &init_nsproxy, NULL);
+ if (retval) {

+ new_subsys->subsys_id = -1;

+ goto out;

+}

+

+ subsys[subsys_count++] = new_subsys;

+ new_subsys->active = 1;

+out:

+ mutex_unlock(&manage mutex);

+ return retval;

+}

+

+void rcfs_manage_lock(void)

gl

+ mutex_lock(&manage_mutex);

+}

+

+/**

+ * container_manage_unlock - release lock on container changes
+ *

+ * Undo the lock taken in a previous container_manage_lock() call.
+ */

+void rcfs_manage_unlock(void)

+

+ mutex_unlock(&manage_mutex);

+}

+

+int rcfs_dir_removed(struct dentry *d)

gl

+ struct nsproxy *ns = __d_ns(d);

+

+ if (atomic_read(&ns->count))

Page 32 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ return 1;
+

+return O;

+)

+

+/*

+ * Call with manage_mutex held. Writes path of container into buf.
+ * Returns O on success, -errno on error.

+ */

+

+int rcfs_path(struct dentry *dentry, char *buf, int buflen)

+H

+ char *start;

+

+ start = buf + buflen;

+

+ *--start = "\0';

+for (;;) {

+ int len = dentry->d_name.len;

+ if ((start -= len) < buf)

+ return -ENAMETOOLONG;

+ memcpy(start, dentry->d_name.name, len);
+ dentry = dentry->d_parent;

+ if (dentry)

+ break;

+ if (--start < buf)

+ return -ENAMETOOLONG;

+ *start ="'/

+}

+ memmove(buf, start, buf + buflen - start);
+ return O;

+}

+

This demonstrates how to use the generic container subsystem for a
simple resource tracker that counts the total CPU time used by all
processes in a container, during the time that they're members of the
container.

Signed-off-by: Paul Menage <menage@google.com>

kernel/Makefile | 1

Index: container-2.6.20/include/linux/cpu_acct.h

Page 33 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

linux-2.6.20-vatsa/init/Kconfig | 7
linux-2.6.20-vatsa/kernel/Makefile | 1

linux-2.6.20.1-vatsa/include/linux/cpu_acct.h | 14 +

linux-2.6.20.1-vatsa/init/Kconfig | 7

linux-2.6.20.1-vatsa/kernel/Makefile | 1
linux-2.6.20.1-vatsa/kernel/cpu_acct.c | 221 +++++++++++++++HHHH+
linux-2.6.20.1-vatsa/kernel/sched.c | 14 +

5 files changed, 254 insertions(+), 3 deletions(-)

diff -puN /dev/null include/linux/cpu_acct.h
--- /dev/null 2007-03-08 22:15:35.669495160 +0530
+++ linux-2.6.20.1-vatsa/include/linux/cpu_acct.h 2007-03-08 22:35:32.000000000 +0530

@@ -0,0+1,14 @@
+

+#ifndef _LINUX_CPU_ACCT_H
+#define _LINUX_CPU_ACCT_H
+
+#include <linux/rcfs.h>
+#include <asm/cputime.h>
+
+#ifdef CONFIG_RC_CPUACCT
+extern void cpuacct_charge(struct task_struct *, cputime_t cputime);
+#else
+static void inline cpuacct_charge(struct task_struct *p, cputime_t cputime) {}
+#endif
+
+#endif
diff -puN init/Kconfig~cpu_acct init/Kconfig
--- linux-2.6.20.1/init/Kconfig~cpu_acct 2007-03-08 22:35:32.000000000 +0530
+++ linux-2.6.20.1-vatsa/init/Kconfig 2007-03-08 22:35:32.000000000 +0530
@@ -291,6 +291,13 @@ config SYSFS_DEPRECATED
If you are using a distro that was released in 2006 or later,
it should be safe to say N here.

+config RC_CPUACCT

+ bool "Simple CPU accounting container subsystem"

+ select RCFS

+ help

+ Provides a simple Resource Controller for monitoring the
+ total CPU consumed by the tasks in a container

+

config RELAY

Page 34 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

bool "Kernel->user space relay support (formerly relayfs)"
help
diff -puN /dev/null kernel/cpu_acct.c
--- /dev/null 2007-03-08 22:15:35.669495160 +0530
+++ linux-2.6.20.1-vatsa/kernel/cpu_acct.c 2007-03-08 22:35:32.000000000 +0530

@@ -0,0 +1,221 @@

+/*

+ * kernel/cpu_acct.c - CPU accounting container subsystem
+ *

+ * Copyright (C) Google Inc, 2006

+ *

+ * Developed by Paul Menage (menage@google.com) and Balbir Singh
+ * (balbir@in.ibm.com)

+ *

+ */

+

+/*

+ * Container subsystem for reporting total CPU usage of tasks in a
+ * container, along with percentage load over a time interval
+ */

+

+#include <linux/module.h>

+#include <linux/nsproxy.h>

+#include <linux/rcfs.h>

+#include <linux/fs.h>

+#include <asm/div64.h>

+

+struct cpuacct {

+ spinlock_t lock;

+ /* total time used by this class */

+ cputime64_t time;

+

+ /* time when next load calculation occurs */

+ u64 next_interval_check;

+

+ /* time used in current period */

+ cputime64 _t current_interval_time;

+

+ /* time used in last period */

+ cputime64 _t last_interval_time;

+};

+

+static struct rc_subsys cpuacct_subsys;

+

+static inline struct cpuacct *nsproxy_ca(struct nsproxy *ns)
+

+if (Ins)

+ return NULL;

Page 35 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+

+ return ns->ctlr_data[cpuacct_subsys.subsys_id];
+}

+

+static inline struct cpuacct *task_ca(struct task_struct *task)
gl

+ return nsproxy_ca(task->nsproxy);

+}

+

+#define INTERVAL (HZ * 10)

+

+static inline u64 next_interval_boundary(u64 now) {
+ [* calculate the next interval boundary beyond the
+ *current time */

+ do_div(now, INTERVAL);

+ return (now + 1) * INTERVAL,;

+}

+

+static int cpuacct_create(struct rc_subsys *ss, struct nsproxy *ns,
+ struct nsproxy *parent)

H

+ struct cpuacct *ca;

+

+ if (parent && (parent != &init_nsproxy))

+ return -EINVAL,;

+
+ ca = kzalloc(sizeof(*ca), GFP_KERNEL);
+if (Ica)

+ return -ENOMEM;

+ spin_lock_init(&ca->lock);

+ ca->next_interval_check = next_interval_boundary(get_jiffies_64());
+ ns->ctlr_data[cpuacct_subsys.subsys_id] = ca;

+ return O;

+}

+

+static void cpuacct_destroy(struct rc_subsys *ss, struct nsproxy *ns)
gl

+ kfree(nsproxy_ca(ns));

+}

+

+/* Lazily update the load calculation if necessary. Called with ca locked */
+static void cpuusage_update(struct cpuacct *ca)

gl

+ u64 now = get_jiffies_64();

+ /* If we're not due for an update, return */

+ if (ca->next_interval_check > now)

+ return;

+

Page 36 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ if (ca->next_interval_check <= (now - INTERVAL)) {
+ /* If it's been more than an interval since the last

+ * check, then catch up - the last interval must have
+ * been zero load */

+ ca->last_interval_time = 0;

+ ca->next_interval_check = next_interval _boundary(now);
+}else{

+ /* If a steal takes the last interval time negative,

+ *then we just ignore it */

+ if ((s64)ca->current_interval_time > 0) {

+ ca->last_interval _time = ca->current_interval_time;
+ }else {

+ ca->last_interval_time = 0;

+}

+ ca->next_interval _check += INTERVAL;

+}

+ ca->current_interval_time = 0;

+}

+

+static ssize_t cpuusage_read(struct nsproxy *ns,

+ struct cftype *cft,

+ struct file *file,

+ char __user *buf,

+ size_t nbytes, loff t *ppos)

gl

+ struct cpuacct *ca = nsproxy_ca(ns);

+ u6b4 time;

+ char usagebuf[64];

+ char *s = usagebuf;

+

+ spin_lock_irq(&ca->lock);

+ cpuusage_update(ca);

+ time = cputime64_to_jiffies64(ca->time);

+ spin_unlock_irg(&ca->lock);

+

+ /* Convert 64-bit jiffies to seconds */

+ time *= 1000;

+ do_div(time, HZ);

+ s += sprintf(s, "%llu", (unsigned long long) time);

+

+ return simple_read_from_buffer(buf, nbytes, ppos, usagebuf, s - usagebuf);
+}

+

+static ssize_t load_read(struct nsproxy *ns,

+ struct cftype *cft,

+ struct file *file,

+ char __user *buf,

+ size_t nbytes, loff_t *ppos)

Page 37 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

gl

+ struct cpuacct *ca = nsproxy_ca(ns);

+ u64 time;

+ char usagebuf[64];

+ char *s = usagebuf;

+

+ /* Find the time used in the previous interval */

+ spin_lock_irg(&ca->lock);

+ cpuusage_update(ca);

+ time = cputime64_to_jiffies64(ca->last_interval_time);
+ spin_unlock_irq(&ca->lock);

+

+ /* Convert time to a percentage, to give the load in the
+ * previous period */

+ time *= 100;

+ do_div(time, INTERVAL);

is += sprintf(s, "%llu", (unsigned long long) time);

: return simple_read_from_buffer(buf, nbytes, ppos, usagebuf, s - usagebuf);
:}

+static struct cftype cft_usage ={

+ .name = "cpuacct.usage",

+ .read = cpuusage_read,

+};

+

+static struct cftype cft_load = {

+ .name = "cpuacct.load”,

+ .read = load_read,

+};

+

+static int cpuacct_populate(struct rc_subsys *ss,
+ struct dentry *d)

gl

+int err;

+

+if ((err = rcfs_add_file(d, &cft_usage)))
+ return err;

+ if ((err = rcfs_add_file(d, &cft_load)))
+ return err;

+

+return O;

+}

+

+

+void cpuacct_charge(struct task_struct *task, cputime_t cputime)

H

Page 38 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+

+ struct cpuacct *ca;

+ unsigned long flags;

+

+ if (Icpuacct_subsys.active)

+ return;

+ rcu_read_lock();

+ ca = task_ca(task);

+if (ca) {

+ spin_lock_irgsave(&ca->lock, flags);

+ cpuusage_update(ca);

+ ca->time = cputime64_add(ca->time, cputime);

+ ca->current_interval_time =

+ cputime64_add(ca->current_interval_time, cputime);
+ spin_unlock_irgrestore(&ca->lock, flags);

+}

+ rcu_read_unlock();

+}

+

+static struct rc_subsys cpuacct_subsys = {
+ .name = "cpuacct”,

+ .create = cpuacct_create,

+ .destroy = cpuacct_destroy,

+ .populate = cpuacct_populate,

+

.subsys _id =-1,
+};
+
+
+int __init init_cpuacct(void)
gl

+intid = rc_register_subsys(&cpuacct_subsys);

+returnid<0?id: O;

+}

+

+module_init(init_cpuacct)

diff -puN kernel/Makefile~cpu_acct kernel/Makefile

--- linux-2.6.20.1/kernel/Makefile~cpu_acct 2007-03-08 22:35:32.000000000 +0530
+++ linux-2.6.20.1-vatsa/kernel/Makefile 2007-03-08 22:35:32.000000000 +0530
@@ -36,6 +36,7 @@ obj-$(CONFIG_BSD_PROCESS_ACCT) += acct.o
0bj-$(CONFIG_KEXEC) += kexec.o

0bj-$(CONFIG_COMPAT) += compat.o

0bj-$(CONFIG_CPUSETS) += cpuset.o

+0bj-$(CONFIG_RC_CPUACCT) += cpu_acct.o

0bj-$(CONFIG_IKCONFIG) += configs.o

0bj-$(CONFIG_STOP_MACHINE) += stop_machine.o

0bj-$(CONFIG_AUDIT) += audit.o auditfilter.o

diff -puN kernel/sched.c~cpu_acct kernel/sched.c

--- linux-2.6.20.1/kernel/sched.c~cpu_acct 2007-03-08 22:35:32.000000000 +0530

Page 39 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+++ linux-2.6.20.1-vatsa/kernel/sched.c 2007-03-08 22:35:32.000000000 +0530
@@ -52,6 +52,7 @@

#include <linux/tsacct_kern.h>

#include <linux/kprobes.h>

#include <linux/delayacct.h>

+#include <linux/cpu_acct.h>

#include <asm/tlb.h>

#include <asm/unistd.h>
@@ -3066,9 +3067,13 @@ void account_user_time(struct task_struc
{
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
cputime64_t tmp;
+ struct rq *rq = this_rq();

p->utime = cputime_add(p->utime, cputime);

+if (p '=rg->idle)

+ cpuacct_charge(p, cputime);

+

[* Add user time to cpustat. */
tmp = cputime_to_cputime64(cputime);
if (TASK_NICE(p) > 0)

@@ -3098,9 +3103,10 @@ void account_system_time(struct task_str

cpustat->irq = cputime64_add(cpustat->irq, tmp);
else if (softirg_count())
cpustat->softirg = cputime64_add(cpustat->softirq, tmp);

- else if (p !=rg->idle)

+ else if (p !=rg->idle) {
cpustat->system = cputime64_add(cpustat->system, tmp);

- else if (atomic_read(&rg->nr_iowait) > 0)

+ cpuacct_charge(p, cputime);

+} else if (atomic_read(&rg->nr_iowait) > 0)
cpustat->iowait = cputime64_add(cpustat->iowait, tmp);

else
cpustat->idle = cputime64_add(cpustat->idle, tmp);

@@ -3125,8 +3131,10 @@ void account_steal_time(struct task_stru
cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
else
cpustat->idle = cputime64_add(cpustat->idle, tmp);

- }else

+}else{
cpustat->steal = cputime64_add(cpustat->steal, tmp);

+ cpuacct_charge(p, -tmp);

+}

}

static void task_running_tick(struct rq *rq, struct task_struct *p)

Page 40 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

linux-2.6.20-vatsal/fs/proc/base.c | 4
linux-2.6.20-vatsa/fs/super.c | 5
linux-2.6.20-vatsa/include/linux/cpuset.h | 11
linux-2.6.20-vatsa/include/linux/fs.h | 2
linux-2.6.20-vatsa/include/linux/mempolicy.h | 12
linux-2.6.20-vatsa/include/linux/sched.h | 2
linux-2.6.20-vatsa/init/Kconfig | 5
linux-2.6.20-vatsa/kernel/exit.c | 2
linux-2.6.20-vatsa/kernel/fork.c | 6

linux-2.6.20.1-vatsa/fs/proc/base.c | 4
linux-2.6.20.1-vatsa/fs/super.c | 5
linux-2.6.20.1-vatsa/include/linux/cpuset.h | 11
linux-2.6.20.1-vatsa/include/linux/fs.h | 2
linux-2.6.20.1-vatsa/include/linux/mempolicy.h | 12
linux-2.6.20.1-vatsa/include/linux/sched.h | 2
linux-2.6.20.1-vatsa/init/Kconfig | 5
linux-2.6.20.1-vatsa/kernel/cpuset.c | 1190 +++-------mmmmmmmmme -
linux-2.6.20.1-vatsa/kernel/exit.c | 2
linux-2.6.20.1-vatsa/kernel/fork.c | 6

10 files changed, 180 insertions(+), 1059 deletions(-)

diff -puN fs/proc/base.c~cpuset_uses_rcfs fs/proc/base.c
--- linux-2.6.20.1/fs/proc/base.c~cpuset_uses_rcfs 2007-03-08 22:35:35.000000000 +0530
+++ linux-2.6.20.1-vatsa/fs/proc/base.c 2007-03-08 22:35:35.000000000 +0530
@@ -1867,7 +1867,7 @@ static struct pid_entry tgid_base_stuff
#ifdef CONFIG_SCHEDSTATS
INF("schedstat", S _IRUGO, pid_schedstat),
#endif
-#ifdef CONFIG_CPUSETS
+#ifdef CONFIG_PROC_PID_CPUSET
REG("cpuset”, S_IRUGO, cpuset),
#endif
INF("oom_score”, S _IRUGO, oom_score),
@@ -2148,7 +2148,7 @@ static struct pid_entry tid_base_stuff[]
#ifdef CONFIG_SCHEDSTATS
INF("schedstat", S_IRUGO, pid_schedstat),
#endif
-#ifdef CONFIG_CPUSETS
+#ifdef CONFIG_PROC_PID_CPUSET

Page 41 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

REG("cpuset”, S _IRUGO, cpuset),
#endif
INF("oom_score", S_IRUGO, oom_score),
diff -puN fs/super.c~cpuset_uses_rcfs fs/super.c
--- linux-2.6.20.1/fs/super.c~cpuset_uses_rcfs 2007-03-08 22:35:35.000000000 +0530
+++ linux-2.6.20.1-vatsa/fs/super.c 2007-03-08 22:35:35.000000000 +0530
@@ -39,11 +39,6 @@
#include <linux/mutex.h>
#include <asm/uaccess.h>

-void get_filesystem(struct file_system_type *fs);

-void put_filesystem(struct file_system_type *fs);

-struct file_system_type *get_fs_type(const char *name);
LIST_HEAD(super_blocks);
DEFINE_SPINLOCK(sb_lock);

diff -puN include/linux/cpuset.h~cpuset_uses_rcfs include/linux/cpuset.h

--- linux-2.6.20.1/include/linux/cpuset.h~cpuset_uses_rcfs 2007-03-08 22:35:35.000000000 +0530
+++ linux-2.6.20.1-vatsa/include/linux/cpuset.h 2007-03-08 22:35:35.000000000 +0530

Q@ -11,6 +11,7 @@

#include <linux/sched.h>

#include <linux/cpumask.h>

#include <linux/nodemask.h>

+#include <linux/rcfs.h>

#ifdef CONFIG_CPUSETS

@@ -19,8 +20,6 @@ extern int number_of_cpusets; /* How man
extern int cpuset_init_early(void);

extern int cpuset_init(void);

extern void cpuset_init_smp(void);

-extern void cpuset_fork(struct task_struct *p);

-extern void cpuset_exit(struct task_struct *p);

extern cpumask_t cpuset_cpus_allowed(struct task_struct *p);
extern nodemask_t cpuset_mems_allowed(struct task_struct *p);
#define cpuset_current._mems_allowed (current->mems_allowed)
@@ -74,14 +73,13 @@ static inline int cpuset_do_slab_mem_spr
}

extern void cpuset_track online_nodes(void);
+extern int current_cpuset_is_being_rebound(void);

#else /* ICONFIG_CPUSETS */

static inline int cpuset_init_early(void) { return O; }
static inline int cpuset_init(void) { return O; }

Page 42 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

static inline void cpuset_init_smp(void) {}
-static inline void cpuset_fork(struct task_struct *p) {}
-static inline void cpuset_exit(struct task_struct *p) {}

static inline cpumask_t cpuset_cpus_allowed(struct task_struct *p)

{
@@ -146,6 +144,11 @@ static inline int cpuset_do_slab_mem_spr

static inline void cpuset_track_online_nodes(void) {}

+static inline int current_cpuset_is_being_rebound(void)
gl

+ return O;

+}

+

#endif /* ICONFIG_CPUSETS */

#endif /* _LINUX_CPUSET_H */

diff -puN include/linux/fs.h~cpuset_uses_rcfs include/linux/fs.h

--- linux-2.6.20.1/include/linux/fs.h~cpuset_uses_rcfs 2007-03-08 22:35:35.000000000 +0530
+++ linux-2.6.20.1-vatsa/include/linux/fs.h 2007-03-08 22:35:35.000000000 +0530

@@ -1841,6 +1841,8 @@ extern int vfs_fstat(unsigned int, struc

extern int vfs_ioctl(struct file *, unsigned int, unsigned int, unsigned long);

+extern void get_filesystem(struct file_system_type *fs);
+extern void put_filesystem(struct file_system_type *fs);
extern struct file_system_type *get_fs_type(const char *name);
extern struct super_block *get_super(struct block_device *);
extern struct super_block *user_get_super(dev_t);
diff -puN include/linux/mempolicy.h~cpuset_uses_rcfs include/linux/mempolicy.h
--- linux-2.6.20.1/include/linux/mempolicy.h~cpuset_uses_rcfs 2007-03-08 22:35:35.000000000
+0530
+++ linux-2.6.20.1-vatsa/include/linux/mempolicy.h 2007-03-08 22:35:35.000000000 +0530
@@ -148,14 +148,6 @@ extern void mpol_rebind_task(struct task
const nodemask_t *new);
extern void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new);
extern void mpol_fix_fork _child_flag(struct task_struct *p);
-#define set_cpuset_being_rebound(x) (cpuset_being_rebound = (x))

-#ifdef CONFIG_CPUSETS

-#define current_cpuset_is_being_rebound() \
- (cpuset_being_rebound == current->cpuset)
-#else

-#define current_cpuset_is_being_rebound() O
-#endif

extern struct mempolicy default_policy;

Page 43 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

extern struct zonelist *huge_zonelist(struct vm_area_struct *vma,
@@ -173,8 +165,6 @@ static inline void check _highest_zone(en
int do_migrate_pages(struct mm_struct *mm,
const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags);

-extern void *cpuset_being_rebound; /* Trigger mpol_copy vma rebind */

#else

struct mempolicy {};

@@ -253,8 +243,6 @@ static inline void mpol_fix_fork_child_f
{

}

-#define set_cpuset_being_rebound(x) do {} while (0)
static inline struct zonelist *huge_zonelist(struct vm_area_struct *vma,
unsigned long addr)
{
diff -puN include/linux/sched.h~cpuset_uses_rcfs include/linux/sched.h
--- linux-2.6.20.1/include/linux/sched.h~cpuset_uses_rcfs 2007-03-08 22:35:35.000000000 +0530
+++ linux-2.6.20.1-vatsa/include/linux/sched.h 2007-03-08 22:35:35.000000000 +0530
@@ -743,7 +743,6 @@ extern unsigned int max_cache_size;

struct io_context; /* See blkdev.h */
-struct cpuset;

#define NGROUPS_SMALL 32
#define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
@@ -1026,7 +1025,6 @@ struct task_struct {
short il_next;
#endif
#ifdef CONFIG_CPUSETS
- struct cpuset *cpuset;
nodemask_t mems_allowed;
int cpuset_mems_generation;
int cpuset_mem_spread_rotor;
diff -puN init/Kconfig~cpuset_uses_rcfs init/Kconfig
--- linux-2.6.20.1/init/Kconfig~cpuset_uses_rcfs 2007-03-08 22:35:35.000000000 +0530
+++ linux-2.6.20.1-vatsa/init/Kconfig 2007-03-08 22:35:35.000000000 +0530
@@ -298,6 +298,11 @@ config RC_CPUACCT
Provides a simple Resource Controller for monitoring the
total CPU consumed by the tasks in a container

+config PROC_PID_CPUSET
+ bool "Include legacy /proc/<pid>/cpuset file"
+ depends on CPUSETS

Page 44 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ default y
+
config RELAY
bool "Kernel->user space relay support (formerly relayfs)”
help
diff -puN kernel/cpuset.c~cpuset_uses_rcfs kernel/cpuset.c
--- linux-2.6.20.1/kernel/cpuset.c~cpuset_uses_rcfs 2007-03-08 22:35:35.000000000 +0530
+++ linux-2.6.20.1-vatsa/kernel/cpuset.c 2007-03-08 22:35:35.000000000 +0530
@@ -49,13 +49,13 @@
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>
+#include <linux/rcfs.h>
+#include <linux/nsproxy.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
#include <linux/mutex.h>

-#define CPUSET_SUPER_MAGIC 0x27e0eb
_/*
* Tracks how many cpusets are currently defined in system.
* When there is only one cpuset (the root cpuset) we can
@@ -63,6 +63,10 @@
*/
int number_of_cpusets __read_maostly;

+/* Retrieve the cpuset from a container */
+static struct rc_subsys cpuset_subsys;
+struct cpuset;

+

[* See "Frequency meter" comments, below. */

struct fmeter {
@@ -90,7 +94,7 @@ struct cpuset {
struct list_head children; /* my children */

struct cpuset *parent; /* my parent */
- struct dentry *dentry; /* cpuset fs entry */
+ struct dentry *dentry; [* cpuset fs entry */

/*

* Copy of global cpuset_mems_generation as of the most
@@ -106,8 +110,6 @@ typedef enum {

CS_CPU_EXCLUSIVE,

CS_MEM_EXCLUSIVE,

CS_MEMORY_MIGRATE,

Page 45 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- CS_REMOVED,

-CS_NOTIFY_ON_RELEASE,
CS_SPREAD_PAGE,
CS_SPREAD_SLAB,

} cpuset_flagbits _t;

@@ -123,16 +125,6 @@ static inline int is_mem_exclusive(const
return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);

}

-static inline int is_removed(const struct cpuset *cs)
{

- return test_bit(CS_REMOVED, &cs->flags);

-}

-static inline int notify_on_release(const struct cpuset *cs)
-{
- return test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
-}

static inline int is_memory_migrate(const struct cpuset *cs)
{
return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
@@ -178,383 +170,53 @@ static struct cpuset top_cpuset = {
.children = LIST_HEAD_INIT(top_cpuset.children),

I3

-static struct vfsmount *cpuset_mount;

-static struct super_block *cpuset_sb;

e

- * We have two global cpuset mutexes below. They can nest.

- * It is ok to first take manage_mutex, then nest callback_mutex. We also
- * require taking task_lock() when dereferencing a tasks cpuset pointer.

- * See "The task_lock() exception”, at the end of this comment.

*

- * A task must hold both mutexes to modify cpusets. If a task

- * holds manage_mutex, then it blocks others wanting that mutex,

- * ensuring that it is the only task able to also acquire callback_mutex
- * and be able to modify cpusets. It can perform various checks on

- * the cpuset structure first, knowing nothing will change. It can

- * also allocate memory while just holding manage_mutex. While it is
- * performing these checks, various callback routines can briefly

- * acquire callback_mutex to query cpusets. Once it is ready to make
- * the changes, it takes callback_mutex, blocking everyone else.

*

- * Calls to the kernel memory allocator can not be made while holding
- * callback_mutex, as that would risk double tripping on callback_mutex
- * from one of the callbacks into the cpuset code from within

Page 46 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-* alloc_pages().
*

* |f a task is only holding callback mutex, then it has read-only

* access to cpusets.

*

* The task_struct fields mems_allowed and mems_generation may only
* be accessed in the context of that task, so require no locks.

*

* Any task can increment and decrement the count field without lock.

* So in general, code holding manage_mutex or callback_mutex can't rely
* on the count field not changing. However, if the count goes to

* zero, then only attach_task(), which holds both mutexes, can

* increment it again. Because a count of zero means that no tasks

* are currently attached, therefore there is no way a task attached

* to that cpuset can fork (the other way to increment the count).

* So code holding manage_mutex or callback_mutex can safely assume that
* if the count is zero, it will stay zero. Similarly, if a task

* holds manage_mutex or callback_mutex on a cpuset with zero count, it
* knows that the cpuset won't be removed, as cpuset_rmdir() needs

* both of those mutexes.

*

* The cpuset_common_file_write handler for operations that modify

* the cpuset hierarchy holds manage_mutex across the entire operation,
* single threading all such cpuset modifications across the system.

*

* The cpuset_common_file_read() handlers only hold callback_mutex across
* small pieces of code, such as when reading out possibly multi-word

* cpumasks and nodemasks.

*

* The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't

* (usually) take either mutex. These are the two most performance

* critical pieces of code here. The exception occurs on cpuset_exit(),

* when a task in a notify_on_release cpuset exits. Then manage_mutex
* is taken, and if the cpuset count is zero, a usermode call made

* to /sbin/cpuset_release_agent with the name of the cpuset (path

* relative to the root of cpuset file system) as the argument.
*

- * A cpuset can only be deleted if both its ‘count’ of using tasks

- *is zero, and its list of 'children’ cpusets is empty. Since all

- * tasks in the system use _some__ cpuset, and since there is always at
- * least one task in the system (init), therefore, top_cpuset

- * always has either children cpusets and/or using tasks. So we don't

- * need a special hack to ensure that top_cpuset cannot be deleted.

*

- * The above "Tale of Two Semaphores" would be complete, but for:

*

- * The task_lock() exception

*

Page 47 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- * The need for this exception arises from the action of attach_task(),
- * which overwrites one tasks cpuset pointer with another. It does

- * 50 using both mutexes, however there are several performance

- * critical places that need to reference task->cpuset without the

- * expense of grabbing a system global mutex. Therefore except as
* noted below, when dereferencing or, as in attach_task(), modifying
* a tasks cpuset pointer we use task_lock(), which acts on a spinlock
* (task->alloc_lock) already in the task_struct routinely used for

* such matters.

*

- *P.S. One more locking exception. RCU is used to guard the

* update of a tasks cpuset pointer by attach_task() and the

* access of task->cpuset->mems_generation via that pointer in

* the routine cpuset_update_task_memory_state().

- */

-static DEFINE_MUTEX(manage_mutex);

static DEFINE_MUTEX(callback_mutex);

-[*

- * A couple of forward declarations required, due to cyclic reference loop:
- * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
- * ->cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
-*/

-static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
-static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
-static struct backing_dev_info cpuset_backing_dev_info = {

- .ra_pages =0, /* No readahead */

- .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
-}

-static struct inode *cpuset_new_inode(mode_t mode)

-{

- struct inode *inode = new_inode(cpuset_sb);

- if (inode) {

- inode->i_mode = mode;

- inode->i_uid = current->fsuid,

- inode->i_gid = current->fsgid,

- inode->i_blocks = 0;

- inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
- inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;

-}

- return inode;

-}

Page 48 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-static void cpuset_diput(struct dentry *dentry, struct inode *inode)
-{

- I* is dentry a directory ? if so, kfree() associated cpuset */

- if (S_ISDIR(inode->i_mode)) {

- struct cpuset *cs = dentry->d_fsdata;

- BUG_ON(!(is_removed(cs)));

- kfree(cs);

-}

- iput(inode);

-}

-static struct dentry_operations cpuset_dops = {

- .d_iput = cpuset_diput,

-}

-static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
-{

- struct dentry *d = lookup_one_len(name, parent, strlen(name));
- if (IS_ERR(d))

- d->d_op = &cpuset_dops;

- return d;

-}

-static void remove_dir(struct dentry *d)

+/* Update the cpuset for a container */

+static inline void set_cs(struct nsproxy *ns, struct cpuset *cs)

{
- struct dentry *parent = dget(d->d_parent);

- d_delete(d);

- simple_rmdir(parent->d_inode, d);

- dput(parent);

+ ns->ctlr_data[cpuset_subsys.subsys_id] = cs;
}

-

- * NOTE : the dentry must have been dget()'ed

- %/

-static void cpuset_d_remove_dir(struct dentry *dentry)

+static inline struct cpuset *ns_cs(struct nsproxy *ns)

{

- struct list_head *node;

- spin_lock(&dcache_lock);

- node = dentry->d_subdirs.next;

- while (node != &dentry->d_subdirs) {

- struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
- list_del_init(node);

Page 49 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

if (d->d_inode) {
d = dget_locked(d);
- spin_unlock(&dcache_lock);

- d_delete(d);

- simple_unlink(dentry->d_inode, d);
- dput(d);

- spin_lock(&dcache_lock);

-}

- node = dentry->d_subdirs.next;

-}

- list_del_init(&dentry->d_u.d_child);

- spin_unlock(&dcache_lock);

- remove_dir(dentry);

+ return ns->ctlr_data[cpuset_subsys.subsys _id];

}

-static struct super_operations cpuset_ops = {

- .statfs = simple_ statfs,

- .drop_inode = generic_delete_inode,

-}

-static int cpuset_fill_super(struct super_block *sb, void *unused_data,
- int unused_silent)

+static inline struct cpuset *task _cs(struct task_struct *tsk)
{

- struct inode *inode;

- struct dentry *root;

- sb->s_blocksize = PAGE_CACHE_SIZE;

- sb->s_blocksize bits = PAGE_CACHE_SHIFT,;

- sb->s_magic = CPUSET_SUPER_MAGIC;

- sb->s_op = &cpuset_ops;

- cpuset_sb = sb;

- inode = cpuset_new_inode(S_IFDIR | S IRUGO | S_IXUGO | S_IWUSR);
- if (inode) {

- inode->i_op = &simple_dir_inode_operations;

- inode->i_fop = &simple_dir_operations;

- [* directories start off with i_nlink == 2 (for "." entry) */

- inc_nlink(inode);

- }else {

- return -ENOMEM,;

+ if ('tsk->nsproxy) {

+ printk ("nsproxy NULL \n");

+ return &top_cpuset;

}

- root = d_alloc_root(inode);

Page 50 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- if (froot) {

- iput(inode);

- return -ENOMEM,;

-}

- sb->s_root = root;

- return O;

+ return ns_cs(tsk->nsproxy);

}

+/* This is ugly, but preserves the userspace API for existing cpuset
+ * users. If someone tries to mount the "cpuset” filesystem, we
+ * silently switch it to mount "rcfs" instead */
+
static int cpuset_get_sb(struct file_system_type *fs_type,
int flags, const char *unused_dev_name,
void *data, struct vfsmount *mnt)
{
- return get_sb_single(fs_type, flags, data, cpuset_fill_super, mnt);
+ struct file_system_type *rcfs = get_fs_type("rcfs");
+intret = -ENODEV;
+
+ if (rcfs) {
+ ret = rcfs->get_sb(rcfs, flags, unused_dev_name, "cpuset”, mnt);
+ put_filesystem(rcfs);
+}
+
+ return ret;

}

static struct file_system_type cpuset_fs_type ={
.name = "cpuset",
.get_sb = cpuset_get_sb,

- .kill_sb = kill_litter_super,

3

-/* struct cftype:

*

- * The files in the cpuset filesystem mostly have a very simple read/write

- * handling, some common function will take care of it. Nevertheless some cases
* (read tasks) are special and therefore | define this structure for every

* kind of file.

*

*

* When reading/writing to a file:

- * - the cpuset to use in file->f_path.dentry->d_parent->d_fsdata
* - the 'cftype’ of the file is file->f_path.dentry->d_fsdata

- *

Page 51 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-struct cftype {

- char *name;

- int private;

- int (*open) (struct inode *inode, struct file *file);

- ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,

- loff_t *ppos);

- int (*write) (struct file *file, const char __user *buf, size_t nbytes,
- loff_t *ppos);

- int (*release) (struct inode *inode, struct file *file);

_}1

-static inline struct cpuset *__d_cs(struct dentry *dentry)
-{
- return dentry->d_fsdata;

-}

-static inline struct cftype *__d_cft(struct dentry *dentry)

{

- return dentry->d_fsdata,

-}

e

- * Call with manage_mutex held. Writes path of cpuset into buf.
- * Returns 0 on success, -errno on error.

- %/

-static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
-{

- char *start;

- start = buf + buflen;

- *--start = "\0";

- for (i) {

- int len = cs->dentry->d_name.len;
- if ((start -= len) < buf)

- return -ENAMETOOLONG,;

- memcpy(start, cs->dentry->d_name.name, len);
- CS = cs->parent;

- if (Ics)

- break;

- if (lcs->parent)

- continue;

- if (--start < buf)

return -ENAMETOOLONG;
*start = '/';

-}

- memmove(buf, start, buf + buflen - start);

Page 52 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- return O;

-}

-
- * Notify userspace when a cpuset is released, by running

* /sbin/cpuset_release_agent with the name of the cpuset (path
* relative to the root of cpuset file system) as the argument.

*

* Most likely, this user command will try to rmdir this cpuset.

*

* This races with the possibility that some other task will be

* attached to this cpuset before it is removed, or that some other

* user task will ‘'mkdir’ a child cpuset of this cpuset. That's ok.

* The presumed 'rmdir" will fail quietly if this cpuset is no longer

* unused, and this cpuset will be reprieved from its death sentence,
* to continue to serve a useful existence. Nexttime it's released,

* we will get notified again, if it still has 'notify_on_release' set.

*

* The final arg to call_usermodehelper() is 0, which means don't

* wait. The separate /shin/cpuset_release_agent task is forked by
* call_usermodehelper(), then control in this thread returns here,

* without waiting for the release agent task. We don't bother to

* wait because the caller of this routine has no use for the exit

* status of the /sbin/cpuset_release_agent task, so no sense holding
* our caller up for that.

*

* When we had only one cpuset mutex, we had to call this

* without holding it, to avoid deadlock when call_usermodehelper()
* allocated memory. With two locks, we could now call this while

* holding manage_mutex, but we still don't, so as to minimize

* the time manage_mutex is held.

- %/

-static void cpuset_release_agent(const char *pathbuf)

{

- char *argv[3], *envpl[3];

-inti;

if ('pathbuf)
return;

-i=0;

- argv[i++] = "/sbin/cpuset_release_agent";
- argVv[i++] = (char *)pathbuf;

- argv[i] = NULL;

-i=0;

- [* minimal command environment */

Page 53 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- envp[i++] = "HOME=/";

- envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin®;
- envpli] = NULL,;

- call_usermodehelper(argv[0], argv, envp, 0);

- kfree(pathbuf);

-}

-[*

- * Either cs->count of using tasks transitioned to zero, or the

- * cs->children list of child cpusets just became empty. If this

- * ¢s is notify_on_release() and now both the user count is zero and

- * the list of children is empty, prepare cpuset path in a kmalloc'd

- * puffer, to be returned via ppathbuf, so that the caller can invoke

- * cpuset_release_agent() with it later on, once manage_mutex is dropped.
- * Call here with manage_mutex held.

*

- * This check_for_release() routine is responsible for kmalloc'ing

- * pathbuf. The above cpuset_release_agent() is responsible for

- * kfree'ing pathbuf. The caller of these routines is responsible

- * for providing a pathbuf pointer, initialized to NULL, then

- * calling check_for_release() with manage mutex held and the address
- * of the pathbuf pointer, then dropping manage_mutex, then calling

- * cpuset_release_agent() with pathbuf, as set by check_for_release().
- %/

-static void check_for_release(struct cpuset *cs, char **ppathbuf)

-{

- if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&

- list_empty(&cs->children)) {

char *buf;

buf = kmalloc(PAGE_SIZE, GFP_KERNEL);

if ('buf)

return;

if (cpuset_path(cs, buf, PAGE_SIZE) < 0)

kfree(buf);

- else

- *ppathbuf = buf;

-}

-}

/~k
* Return in *pmask the portion of a cpusets's cpus_allowed that
* are online. If none are online, walk up the cpuset hierarchy

@@ -652,20 +314,19 @@ void cpuset_update_task_memory_state(voi

struct task_struct *tsk = current;

struct cpuset *cs;

Page 54 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- if (tsk->cpuset == &top_cpuset) {

+ if (task_cs(tsk) == &top_cpuset) {
/* Don't need rcu for top_cpuset. It's never freed. */
my_cpusets_mem_gen = top_cpuset.mems_generation;
} else {
rcu_read_lock();

- ¢s = rcu_dereference(tsk->cpuset);

- my_cpusets_mem_gen = cs->mems_generation;

+ my_cpusets_mem_gen = task_cs(current)->mems_generation;
rcu_read_unlock();

}

if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
mutex_lock(&callback mutex);
task _lock(tsk);

- cs = tsk->cpuset; /* Maybe changed when task not locked */

+ cs =task_cs(tsk); /* Maybe changed when task not locked */
guarantee_online_mems(cs, &tsk->mems_allowed);
tsk->cpuset_mems_generation = cs->mems_generation;
if (is_spread_page(cs))

@@ -885,7 +546,7 @@ static void cpuset_migrate_mm(struct mm__
do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

mutex_lock(&callback mutex);
- guarantee_online_mems(tsk->cpuset, &tsk->mems_allowed);
+ guarantee_online_mems(task_cs(tsk), &tsk->mems_allowed);
mutex_unlock(&callback _mutex);

}

@@ -903,6 +564,8 @@ static void cpuset_migrate_mm(struct mm__
* their mempolicies to the cpusets new mems_allowed.
*/

+static void *cpuset_being_rebound;
+

static int update_nodemask(struct cpuset *cs, char *buf)

{

struct cpuset trialcs;

@@ -941,7 +604,7 @@ static int update_nodemask(struct cpuset
CS->mems_generation = cpuset_mems_generation++;
mutex_unlock(&callback _mutex);

- set_cpuset_being_rebound(cs); /* causes mpol_copy() rebind */
+ cpuset_being_rebound = cs; /* causes mpol_copy() rebind */

fudge = 10; /* spare mmarray[] slots */
fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */

Page 55 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -955,13 +618,14 @@ static int update _nodemask(struct cpuset
* enough mmarray[] w/o using GFP_ATOMIC.
*/
while (1) {
- ntasks = atomic_read(&cs->count); /* guess */
+ [* guess */
+ ntasks = nsproxy_task count(cs, cpuset_subsys.subsys_id);
ntasks += fudge;
mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
if (!mmarray)
goto done;
write_lock_irg(&tasklist_lock); /* block fork */
- if (atomic_read(&cs->count) <= ntasks)
+ if (nsproxy_task _count(cs, cpuset_subsys.subsys_id) <= ntasks)
break; /* got enough */
write_unlock_irg(&tasklist_lock); /* try again */
kfree(mmarray);
@@ -978,7 +642,7 @@ static int update_nodemask(struct cpuset
"Cpuset mempolicy rebind incomplete.\n");
continue;
}
- if (p->cpuset != cs)
+ if (task_cs(p) !=cs)
continue;
mm = get_task_mm(p);
if ('mm)
@@ -1012,12 +676,18 @@ static int update_nodemask(struct cpuset

[* We're done rebinding vma's to this cpusets new mems_allowed. */
kfree(mmarray);

- set_cpuset_being_rebound(NULL);

+ cpuset_being_rebound = NULL;

retval = O;
done:
return retval;
}
+int current_cpuset_is_being_rebound(void)
+
+ return task _cs(current) == cpuset_being_rebound;
+}
+
+
/*
* Call with manage_mutex held.
*/

@@ -1168,85 +838,32 @@ static int fmeter_getrate(struct fmeter
return val,

Page 56 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

}

-
- * Attack task specified by pid in 'pidbuf' to cpuset ‘cs’, possibly
- * writing the path of the old cpuset in 'ppathbuf' if it needs to be
- * notified on release.

*

- * Call holding manage_mutex. May take callback_mutex and task_lock of
- * the task 'pid' during call.

-*

-static int attach_task(struct cpuset *cs, char *pidbuf, char **ppathbuf)
+int cpuset_can_attach(struct rc_subsys *ss, struct nsproxy *ns,

+ struct task_struct *tsk)

{

- pid_t pid;

- struct task_struct *tsk;

- struct cpuset *oldcs;

- cpumask_t cpus;

- nodemask_t from, to;

- struct mm_struct *mm;

- int retval;

+ struct cpuset *cs = ns_cs(ns);

- if (sscanf(pidbuf, "%d", &pid) != 1)

- return -EIO;
if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
return -ENOSPC;

- if (pid) {
- read_lock(&tasklist_lock);

tsk = find_task by _pid(pid);

if (Itsk || tsk->flags & PF_EXITING) {
read_unlock(&tasklist_lock);

return -ESRCH;

-}

get_task_struct(tsk);
read_unlock(&tasklist_lock);

if ((current->euid) && (current->euid != tsk->uid)
&& (current->euid = tsk->suid)) {

put_task_struct(tsk);

- return -EACCES;

-}

- }else {

- tsk = current;

Page 57 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- get_task_struct(tsk);

-}
- retval = security_task setscheduler(tsk, 0, NULL);
- if (retval) {

- put_task_struct(tsk);

- return retval;

-}

- mutex_lock(&callback_mutex);

+ return security_task_setscheduler(tsk, 0, NULL);

+}

- task_lock(tsk);

- oldcs = tsk->cpuset;

e

* After getting 'oldcs’ cpuset ptr, be sure still not exiting.

- *If 'oldcs' might be the top_cpuset due to the_top_cpuset_hack
- *then fail this attach_task(), to avoid breaking top_cpuset.count.
.y

- if (tsk->flags & PF_EXITING) {

- task_unlock(tsk);

- mutex_unlock(&callback mutex);

put_task_struct(tsk);

- return -ESRCH,;

-}

- atomic_inc(&cs->count);

- rcu_assign_pointer(tsk->cpuset, cs);

- task_unlock(tsk);

+void cpuset_attach(struct rc_subsys *ss, struct nsproxy *ns,
+ struct nsproxy *old_ns, struct task_struct *tsk)

+

+ struct cpuset *oldcs = ns_cs(old_ns), *cs = ns_cs(ns);

+ cpumask_t cpus;

+ nodemask_t from, to;

+ struct mm_struct *mm;

+ /* container_lock not strictly needed - we already hold manage_mutex */
guarantee_online_cpus(cs, &cpus);
set_cpus_allowed(tsk, cpus);

from = oldcs->mems_allowed,;
to = cs->mems_allowed;

- mutex_unlock(&callback _mutex);

mm = get_task_mm(tsk);
if (mm) {

Page 58 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

mpol_rebind_mm(mm, &to);

@@ -1254,41 +871,31 @@ static int attach_task(struct cpuset *cs
cpuset_migrate_mm(mm, &from, &to);
mmput(mm);

}

- put_task_struct(tsk);

- synchronize_rcu();

- if (atomic_dec_and_test(&oldcs->count))
- check_for_release(oldcs, ppathbuf);

- return O;

}

[* The various types of files and directories in a cpuset file system */

typedef enum {

- FILE_ROOT,

- FILE_DIR,
FILE_MEMORY_MIGRATE,
FILE_CPULIST,
FILE_MEMLIST,
FILE_CPU_EXCLUSIVE,
FILE_MEM_EXCLUSIVE,

- FILE_NOTIFY_ON_RELEASE,
FILE_ MEMORY_PRESSURE_ENABLED,
FILE_ MEMORY_PRESSURE,
FILE_SPREAD_PAGE,
FILE_SPREAD_SLAB,

- FILE_TASKLIST,

} cpuset_filetype_t;

-static ssize_t cpuset_common_file_write(struct file *file,
+static ssize_t cpuset_common_file_write(struct nsproxy *ns,
+ struct cftype *cft,
+ struct file *file,
const char __user *userbuf,
size_t nbytes, loff t *unused_ppos)
{
- struct cpuset *cs = d_cs(file->f_path.dentry->d_parent);
- struct cftype *cft = d_cft(file->f_path.dentry);
+ struct cpuset *cs = ns_cs(ns);
cpuset_filetype t type = cft->private;
char *buffer;
- char *pathbuf = NULL;
int retval = 0;

/* Crude upper limit on largest legitimate cpulist user might write. */
@@ -1305,9 +912,9 @@ static ssize_t cpuset_common_file_write(

Page 59 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

}

buffer[nbytes] = 0; /* nul-terminate */

- mutex_lock(&manage mutex);
+ rcfs_manage_lock();

- if (is_removed(cs)) {

+ if (rcfs_dir_removed(file->f_dentry->d_parent)) {
retval = -ENODEV;
goto out2;

}

@@ -1325,9 +932,6 @@ static ssize_t cpuset_common_file_write(
case FILE_ MEM_EXCLUSIVE:
retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
break;

- case FILE_NOTIFY_ON_RELEASE:

- retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);

- break;
case FILE_MEMORY_MIGRATE:
retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
break;

@@ -1345,9 +949,6 @@ static ssize_t cpuset_common_file_write(
retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
CS->mems_generation = cpuset_mems_generation++;
break;

- case FILE_TASKLIST:

- retval = attach_task(cs, buffer, &pathbuf);

- break;
default:
retval = -EINVAL,
goto out2;
@@ -1356,30 +957,12 @@ static ssize_t cpuset_common_file_write(
if (retval == 0)
retval = nbytes;
out2:

- mutex_unlock(&manage_mutex);
- cpuset_release_agent(pathbuf);
+ rcfs_manage_unlock();

outl:

kfree(buffer);

return retval,

}

-static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
- size_t nbytes, loff_t *ppos)

-{

- ssize_tretval = 0;

- struct cftype *cft = __d_cft(file->f_path.dentry);

Page 60 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- if (!cft)

- return -ENODEV;,

- [* special function ? */

- if (cft->write)

retval = cft->write(file, buf, nbytes, ppos);

- else

retval = cpuset_common_file_write(file, buf, nbytes, ppos);

- return retval;
-}
_/*
* These ascii lists should be read in a single call, by using a user
* pbuffer large enough to hold the entire map. If read in smaller
@@ -1414,11 +997,13 @@ static int cpuset_sprintf_memlist(char *
return nodelist_scnprintf(page, PAGE_SIZE, mask);

}

-static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
- size_t nbytes, loff _t *ppos)

+static ssize_t cpuset_common_file_read(struct nsproxy *ns,

+ struct cftype *cft,

+ struct file *file,

+ char __user *buf,

+ size_t nbytes, loff_t *ppos)

{

- struct cftype *cft = __d_cft(file->f_path.dentry);
- struct cpuset *cs = __d_cs(file->f_path.dentry->d_parent);
+ struct cpuset *cs = ns_cs(ns);
cpuset_filetype_t type = cft->private;
char *page;
ssize tretval = 0;
@@ -1442,9 +1027,6 @@ static ssize_t cpuset_common_file_read(s
case FILE_MEM_EXCLUSIVE:
*s++ = is_mem_exclusive(cs) ? '1': ‘0"
break;
- case FILE_NOTIFY_ON_RELEASE:
- *s++ = notify_on_release(cs) ? '1': '0";
- break;
case FILE_MEMORY_MIGRATE:
*s++ = is_memory_migrate(cs) ? '1': '0’;
break;
@@ -1472,391 +1054,101 @@ out:
return retval;

}

-static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,

Page 61 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- loff_t *ppos)

-{

- ssize_tretval = 0;

- struct cftype *cft = __d_cft(file->f_path.dentry);
- if ('cft)

- return -ENODEV;

- I* special function ? */

- if (cft->read)

- retval = cft->read(file, buf, nbytes, ppos);

- else

- retval = cpuset_common_file_read(file, buf, nbytes, ppos);

- return retval;

-}

-static int cpuset_file_open(struct inode *inode, struct file *file)
_{.

-interr;

- struct cftype *cft;

- err = generic_file_open(inode, file);
- if (err)

- return err;

-cft=__ d_cft(file->f_path.dentry);

- if (!cft)

- return -ENODEV;

- if (cft->open)

- err = cft->open(inode, file);

- else

- err=0;

- return err;

-}

-static int cpuset_file_release(struct inode *inode, struct file *file)

{

- struct cftype *cft = __d_cft(file->f_path.dentry);

- if (cft->release)

- return cft->release(inode, file);

- return O;

-}

"

- * cpuset_rename - Only allow simple rename of directories in place.
- *

-static int cpuset_rename(struct inode *old_dir, struct dentry *old_dentry,

Page 62 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- struct inode *new_dir, struct dentry *new_dentry)
-{

- if (!S_ISDIR(old_dentry->d_inode->i_mode))

- return -ENOTDIR,;

- if (new_dentry->d_inode)

- return -EEXIST;

- if (old_dir !'= new_dir)

- return -EIO;

- return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
-}

-static const struct file_operations cpuset_file_operations = {

- .read = cpuset_file_read,

.write = cpuset_file_write,

llseek = generic_file_lIseek,

.open = cpuset_file_open,

- .release = cpuset_file_release,

-}
-static struct inode_operations cpuset_dir_inode_operations = {
- .lookup = simple_lookup,

- .mkdir = cpuset_mkdir,

- .rmdir = cpuset_rmdir,

- .rename = cpuset_rename,

-}

-static int cpuset_create_file(struct dentry *dentry, int mode)
-{

- struct inode *inode;

- if ('dentry)

- return -ENOENT;

if (dentry->d_inode)

- return -EEXIST;

- inode = cpuset_new_inode(mode);

- if (linode)

- return -ENOMEM,;

- if (S_ISDIR(mode)) {

inode->i_op = &cpuset_dir_inode_operations;
inode->i_fop = &simple_dir_operations;

[* start off with i_nlink == 2 (for "." entry) */
inc_nlink(inode);

- } else if (S_ISREG(mode)) {

- inode->i_size = 0;

- inode->i_fop = &cpuset_file_operations;

Page 63 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-}

- d_instantiate(dentry, inode);

- dget(dentry); /* Extra count - pin the dentry in core */
- return O;

-}

-[*

- * cpuset_create_dir - create a directory for an object.
- * cs: the cpuset we create the directory for.

- * It must have a valid ->parent field

- * And we are going to fill its ->dentry field.

- * name: The name to give to the cpuset directory. Will be copied.
- * mode: mode to set on new directory.

- */

-static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
{

- struct dentry *dentry = NULL;

- struct dentry *parent;

- int error = 0;

- parent = cs->parent->dentry;

- dentry = cpuset_get_dentry(parent, name);

- if (IS_ERR(dentry))

- return PTR_ERR(dentry);

- error = cpuset_create_file(dentry, S_IFDIR | mode);
- if (lerror) {

- dentry->d_fsdata = cs;

inc_nlink(parent->d_inode);

- cs->dentry = dentry;

-}

- dput(dentry);

- return error;

-}

-static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
-{

- struct dentry *dentry;

- int error,

- mutex_lock(&dir->d_inode->i_mutex);

- dentry = cpuset_get_dentry(dir, cft->name);

- if (1S_ERR(dentry)) {

- error = cpuset_create_file(dentry, 0644 | S_IFREG);
- if (‘error)

- dentry->d_fsdata = (void *)cft;

Page 64 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- dput(dentry);

-} else

- error = PTR_ERR(dentry);

- mutex_unlock(&dir->d_inode->i_mutex);
- return error,

-}

-[*
- * Stuff for reading the 'tasks' file.

*

- * Reading this file can return large amounts of data if a cpuset has

- * *|lots* of attached tasks. So it may need several calls to read(),

- * but we cannot guarantee that the information we produce is correct
- * unless we produce it entirely atomically.

*

- * Upon tasks file open(), a struct ctr_struct is allocated, that

- * will have a pointer to an array (also allocated here). The struct
- * ctr_struct * is stored in file->private_data. Its resources will

- * be freed by release() when the file is closed. The array is used
- * to sprintf the PIDs and then used by read().

-/

-/* cpusets_tasks_read array */

-struct ctr_struct {

- char *buf;

- int bufsz;

-}
e

- * Load into 'pidarray’ up to 'npids' of the tasks using cpuset 'cs'.

- * Return actual number of pids loaded. No need to task_lock(p)

- * when reading out p->cpuset, as we don't really care if it changes
- * on the next cycle, and we are not going to try to dereference it.

- %/

-static int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
-{

-intn=0;

- struct task_struct *g, *p;

- read_lock(&tasklist_lock);

do_each_thread(q, p) {
if (p->cpuset == cs) {
pidarray[n++] = p->pid,;
if (unlikely(n == npids))
goto array_full;

-}

Page 65 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- } while_each_thread(g, p);

-array_full:

- read_unlock(&tasklist_lock);

- return n;

-}

-static int cmppid(const void *a, const void *b)
-{

- return *(pid_t *)a - *(pid_t *)b;

-}

-J*

- * Convert array 'a’ of 'npids' pid_t's to a string of newline separated

- * decimal pids in 'buf'. Don't write more than 'sz' chars, but return

- * count ‘cnt’ of how many chars would be written if buf were large enough.
- */

-static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)

-{

-intcnt = 0;

-inti;

- for (i = 0; i < npids; i++)

- cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);

- return cnt;

-}

e

- * Handle an open on 'tasks' file. Prepare a buffer listing the

- * process id's of tasks currently attached to the cpuset being opened.

*

- * Does not require any specific cpuset mutexes, and does not take any.
- %/

-static int cpuset_tasks_open(struct inode *unused, struct file *file)

-{

- struct cpuset *cs = d_cs(file->f_path.dentry->d_parent);

- struct ctr_struct *ctr;

- pid_t *pidarray;

- int npids;

- char c;

if (!(file->f_mode & FMODE_READ))
return O;

- ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
- if ('ctr)
- goto err0;

Page 66 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- [*
- * If cpuset gets more users after we read count, we won't have
- * enough space - tough. This race is indistinguishable to the

- * caller from the case that the additional cpuset users didn't

* show up until sometime later on.

- %

- npids = atomic_read(&cs->count);

- pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);

- if ('pidarray)

- goto errl,

- npids = pid_array_load(pidarray, npids, cs);

- sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);

- [* Call pid_array_to_buf() twice, first just to get bufsz */

- ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
- ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);

- if (Ictr->buf)

- goto errz,

- ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
- kfree(pidarray);

- file->private_data = ctr;

- return O;

-err2:

- kfree(pidarray);

-errl:

- kfree(ctr);

-err0:

- return -ENOMEM;

-}

-static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
- size_t nbytes, loff t *ppos)

{

- struct ctr_struct *ctr = file->private_data;

- if (*ppos + nbytes > ctr->bufsz)

- nbytes = ctr->bufsz - *ppos;

- if (copy_to_user(buf, ctr->buf + *ppos, nbytes))

- return -EFAULT;

- *ppos += nbytes;

- return nbytes;

-}

-static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)

-{

Page 67 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- struct ctr_struct *ctr;
- if (file->f_mode & FMODE_READ) {
- ctr = file->private_data;
kfree(ctr->buf);
kfree(ctr);
-}
- return O;
-}
/~k
* for the common functions, 'private’ gives the type of file
*/

-static struct cftype cft_tasks ={

- .name = "tasks",

.open = cpuset_tasks_open,
.read = cpuset_tasks read,
release = cpuset_tasks_release,
- .private = FILE_TASKLIST,

-},

static struct cftype cft_cpus = {
.name = "cpus",

+ .read = cpuset_common_file_read,

+ .write = cpuset_common_file_write,

.private = FILE_CPULIST,

I3

static struct cftype cft_mems ={
.name = "mems",

+ .read = cpuset_common_file_read,

+ .write = cpuset_common_file_write,

.private = FILE_MEMLIST,

%

static struct cftype cft_cpu_exclusive = {
.name = "cpu_exclusive",

+ .read = cpuset_common_file_read,

+ .write = cpuset_common_file_write,

.private = FILE_CPU_EXCLUSIVE,

3

static struct cftype cft_mem_exclusive = {
.name = "mem_exclusive",

+ .read = cpuset_common_file_read,

+ .write = cpuset_common_file_write,
.private = FILE_MEM_EXCLUSIVE,

Page 68 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

h

-static struct cftype cft_notify_on_release = {

- .name = "notify_on_release",

- .private = FILE_NOTIFY_ON_RELEASE,

-}

static struct cftype cft_memory_migrate = {
.name = "memory_migrate",

+ .read = cpuset_common_file_read,

+ .write = cpuset_common_file_write,

.private = FILE_ MEMORY_MIGRATE,

I3

static struct cftype cft_memory_pressure_enabled = {
.name = "memory_pressure_enabled",

+ .read = cpuset_common_file_read,

+ .write = cpuset_common_file_write,

.private = FILE_MEMORY_PRESSURE_ENABLED,

I3

static struct cftype cft_memory_pressure = {
.name = "memory_pressure",

+ .read = cpuset_common_file_read,

+ .write = cpuset_common_file_write,

.private = FILE_MEMORY_PRESSURE,

I3

static struct cftype cft_spread_page ={
.name = "memory_spread_page",

+ .read = cpuset_common_file_read,

+ .write = cpuset_common_file_write,

.private = FILE_SPREAD_PAGE,

3

static struct cftype cft_spread_slab = {
.name = "memory_spread_slab",

+ .read = cpuset_common_file_read,

+ .write = cpuset_common_file_write,

.private = FILE_SPREAD_SLAB,

3

-static int cpuset_populate_dir(struct dentry *cs_dentry)
+int cpuset_populate(struct rc_subsys *ss, struct dentry *cs_dentry)
{.
int err;
+ struct nsproxy *ns = cs_dentry->d_fsdata;
+ struct cpuset *cs = ns_cs(ns);

Page 69 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)

- return err;

- if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)

- return err;

- if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)

+ cs->dentry = cs_dentry; /* do we need to d_get? */

+

+ if ((err = rcfs_add_file(cs_dentry, &cft_cpus)) < 0)
return err;

- if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)

+ if ((err = rcfs_add_file(cs_dentry, &cft_mems)) < 0)
return err;

- if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)

+if ((err = rcfs_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
return err;

- if ((err = cpuset_add_file(cs_dentry, &cft_ memory_migrate)) < 0)

+if ((err = rcfs_add_file(cs_dentry, &cft_ mem_exclusive)) < 0)
return err;

- if ((err = cpuset_add_file(cs_dentry, &cft_ memory_pressure)) < 0)

+if ((err = rcfs_add_file(cs_dentry, &cft_ memory_migrate)) < 0)
return err;

- if ((err = cpuset_add_file(cs_dentry, &cft_spread_page)) < 0)

+ if ((err = rcfs_add_file(cs_dentry, &cft_memory_pressure)) < 0)
return err;

- if ((err = cpuset_add_file(cs_dentry, &cft_spread_slab)) < 0)

+ if ((err = rcfs_add_file(cs_dentry, &cft_spread_page)) < 0)
return err;

- if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)

+if ((err = rcfs_add_file(cs_dentry, &cft_spread_slab)) < 0)
return err;

+ /* memory_pressure_enabled is in root cpuset only */

+ if (err == 0 && !cs->parent)

+ err =rcfs_add_file(cs_dentry, &cft_ memory_pressure_enabled);

+
return O;

}

@@ -1869,23 +1161,28 @@ static int cpuset_populate_dir(struct de
* Must be called with the mutex on the parent inode held
*/

-static long cpuset_create(struct cpuset *parent, const char *name, int mode)
+int cpuset_create(struct rc_subsys *ss, struct nsproxy *ns,

+ struct nsproxy *parent)

{

- struct cpuset *cs;

-int err;

Page 70 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ struct cpuset *cs, *parent_cs;

+

+ if ('parent) {

+ /* This is early initialization for the top container */

+ set_cs(ns, &top_cpuset);

+ top_cpuset.mems_generation = cpuset_mems_generation++,;
+ return O;

+}
cs = kmalloc(sizeof(*cs), GFP_KERNEL);
if (Ics)

return -ENOMEM;

- mutex_lock(&manage_mutex);
cpuset_update_task_memory_state();
cs->flags = 0;

- if (notify_on_release(parent))

- set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);

- if (is_spread_page(parent))

+ parent_cs = ns_cs(parent);

+ if (is_spread_page(parent_cs))
set_bit(CS_SPREAD_PAGE, &cs->flags);

- if (is_spread_slab(parent))

+ if (is_spread_slab(parent_cs))
set_bit(CS_SPREAD_SLAB, &cs->flags);
cs->cpus_allowed = CPU_MASK_NONE;
cs->mems_allowed = NODE_MASK_NONE;

@@ -1895,40 +1192,16 @ @ static long cpuset_create(struct cpuset
cs->mems_generation = cpuset_mems_generation++;
fmeter_init(&cs->fmeter);

- Cs->parent = parent;

+ cs->parent = parent_cs;
+

+ set_cs(ns, cs);

mutex_lock(&callback mutex);
list_add(&cs->sibling, &cs->parent->children);
number_of_cpusets++;
mutex_unlock(&callback _mutex);

- err = cpuset_create_dir(cs, name, mode);

-if (err < 0)

- goto err;

"

- * Release manage_mutex before cpuset_populate_dir() because it
- *will down() this new directory's i_mutex and if we race with

Page 71 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- * another mkdir, we might deadlock.
.y
- mutex_unlock(&manage _mutex);
- err = cpuset_populate_dir(cs->dentry);
- [*If err < 0, we have a half-filled directory - oh well ;) */
return O;
-err:
- list_del(&cs->sibling);
- mutex_unlock(&manage_mutex);
- kfree(cs);
- return err;
-}
-static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
-{
- struct cpuset *c_parent = dentry->d_parent->d_fsdata;
- I* the vfs holds inode->i_mutex already */
- return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);

}

/*

@@ -1942,51 +1215,39 @@ static int cpuset_mkdir(struct inode *di
* nesting would risk an ABBA deadlock.
*/

-static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
+void cpuset_destroy(struct rc_subsys *ss, struct nsproxy *ns)
{
- struct cpuset *cs = dentry->d_fsdata;
- struct dentry *d;
+ struct cpuset *cs = ns_cs(ns);
struct cpuset *parent;
- char *pathbuf = NULL;

- I* the vfs holds both inode->i_mutex already */

- mutex_lock(&manage_mutex);
cpuset_update task_memory_state();

- if (atomic_read(&cs->count) > 0) {

- mutex_unlock(&manage mutex);

- return -EBUSY;

-}

- if (llist_empty(&cs->children)) {

- mutex_unlock(&manage_mutex);

- return -EBUSY;

-}

Page 72 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+ if (atomic_read(&cs->count) > 0 || !list_empty(&cs->children))
+ BUG();
+
if (is_cpu_exclusive(cs)) {
int retval = update_flag(CS_CPU_EXCLUSIVE, cs, "0");
if (retval < 0) {
mutex_unlock(&manage_mutex);
return retval,
-}
+
+ BUG_ON(retval);
}
parent = cs->parent;
mutex_lock(&callback mutex);
- set_bit(CS_REMOVED, &cs->flags);
list_del(&cs->sibling); /* delete my sibling from parent->children */
- spin_lock(&cs->dentry->d_lock);
- d = dget(cs->dentry);
- cs->dentry = NULL,;
- spin_unlock(&d->d_lock);
- cpuset_d_remove_dir(d);
- dput(d);
number_of cpusets--;
mutex_unlock(&callback _mutex);
- if (list_empty(&parent->children))
- check_for_release(parent, &pathbuf);
- mutex_unlock(&manage_mutex);
- cpuset_release_agent(pathbuf);
- return O;
+ kfree(cs); /* Should it be moved to put_cs ? */

}

+static struct rc_subsys cpuset_subsys = {

+ .name = "cpuset",

+ .Create = cpuset_create,

+ .destroy = cpuset_destroy,
+ .can_attach = cpuset_can_attach,
+ .attach = cpuset_attach,

+ .populate = cpuset_populate,
+ .subsys _id =-1,

+};

+

+

/~k

* cpuset_init_early - just enough so that the calls to
* cpuset_update_task_memory_state() in early init code
@@ -1995,10 +1256,10 @@ static int cpuset_rmdir(struct inode *un

Page 73 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

int __init cpuset_init_early(void)

{

- struct task_struct *tsk = current;

+ if (rc_register_subsys(&cpuset_subsys) < 0)

+ panic("Couldn't register cpuset subsystem");

+ top_cpuset.mems_generation = cpuset_mems_generation++;

- tsk->cpuset = &top_cpuset;
- tsk->cpuset->mems_generation = cpuset_mems_generation++;
return O;

}
@@ -2010,7 +1271,6 @@ int __init cpuset_init_early(void)

int __init cpuset_init(void)
{
- struct dentry *root;

int err;

top_cpuset.cpus_allowed = CPU_MASK_ALL;

@@ -2019,30 +1279,11 @@ int __init cpuset_init(void)
fmeter_init(&top_cpuset.fmeter);
top_cpuset.mems_generation = cpuset_mems_generation++;

- init_task.cpuset = &top_cpuset;
err = register_filesystem(&cpuset_fs_type);
if (err <0)
- goto out;
- cpuset_mount = kern_mount(&cpuset_fs_type);
- if (IS_ERR(cpuset_mount)) {
printk(KERN_ERR "cpuset: could not mount\n");
err = PTR_ERR(cpuset_mount);
cpuset_mount = NULL,;
goto out;
-}
- root = cpuset_mount->mnt_sb->s_root;
- root->d_fsdata = &top_cpuset;
- inc_nlink(root->d_inode);
- top_cpuset.dentry = root;
- root->d_inode->i_op = &cpuset_dir_inode_operations;
+ return err;
number_of cpusets = 1;
- err = cpuset_populate_dir(root);
- I* memory_pressure_enabled is in root cpuset only */
- if (err == 0)
- err = cpuset_add_file(root, &cft_ memory_pressure_enabled);
-0out:

Page 74 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- return err;
+ return O;

}

/*
@@ -2098,7 +1339,7 @@ static void guarantee_online_cpus_mems_i

static void common_cpu_mem_hotplug_unplug(void)
{
- mutex_lock(&manage_mutex);
+ rcfs_manage_lock();
mutex_lock(&callback mutex);

guarantee_online_cpus_mems_in_subtree(&top_cpuset);
@@ -2106,7 +1347,7 @@ static void common_cpu_mem_hotplug_unplu
top_cpuset.mems_allowed = node_online_map;

mutex_unlock(&callback _mutex);
- mutex_unlock(&manage_mutex);
+ rcfs_manage_unlock();

}

/*
@@ -2154,111 +1395,6 @@ void __init cpuset_init_smp(void)
}

/**

- * cpuset_fork - attach newly forked task to its parents cpuset.
- * @tsk: pointer to task_struct of forking parent process.

*

- * Description: A task inherits its parent's cpuset at fork().

*

* A pointer to the shared cpuset was automatically copied in fork.c

* by dup_task_struct(). However, we ignore that copy, since it was

* not made under the protection of task_lock(), so might no longer be
* a valid cpuset pointer. attach_task() might have already changed

- * current->cpuset, allowing the previously referenced cpuset to

* be removed and freed. Instead, we task lock(current) and copy

* its present value of current->cpuset for our freshly forked child.

*

- * At the point that cpuset_fork() is called, 'current’ is the parent

- * task, and the passed argument ‘child’ points to the child task.

*'k/

-void cpuset_fork(struct task_struct *child)
-{

- task_lock(current);

- child->cpuset = current->cpuset;

Page 75 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- atomic_inc(&child->cpuset->count);

- task_unlock(current);

-}

:/**

- * cpuset_exit - detach cpuset from exiting task
- * @tsk: pointer to task_struct of exiting process

*

- * Description: Detach cpuset from @tsk and release it.

*

* Note that cpusets marked notify_on_release force every task in
* them to take the global manage_mutex mutex when exiting.
* This could impact scaling on very large systems. Be reluctant to
* use notify_on_release cpusets where very high task exit scaling
* is required on large systems.

*

* Don't even think about derefencing ‘cs' after the cpuset use count

* goes to zero, except inside a critical section guarded by manage_mutex
* or callback_mutex. Otherwise a zero cpuset use count is a license to
* any other task to nuke the cpuset immediately, via cpuset_rmdir().

*

* This routine has to take manage_mutex, not callback_mutex, because
* it is holding that mutex while calling check for_release(),

* which calls kmalloc(), so can't be called holding callback mutex().

*

* We don't need to task_lock() this reference to tsk->cpuset,

* because tsk is already marked PF_EXITING, so attach_task() won't

* mess with it, or task is a failed fork, never visible to attach_task.

*

* the_top_cpuset_hack:

*

Set the exiting tasks cpuset to the root cpuset (top_cpuset).

Don't leave a task unable to allocate memory, as that is an
accident waiting to happen should someone add a callout in
do_exit() after the cpuset_exit() call that might allocate.

If a task tries to allocate memory with an invalid cpuset,

it will oops in cpuset_update _task _memory_state().

We call cpuset_exit() while the task is still competent to
handle notify_on_release(), then leave the task attached to
the root cpuset (top_cpuset) for the remainder of its exit.

To do this properly, we would increment the reference count on
top_cpuset, and near the very end of the kernel/exit.c do_exit()
code we would add a second cpuset function call, to drop that
reference. This would just create an unnecessary hot spot on
the top_cpuset reference count, to no avail.

* ok ok k% Kk ok ok ok ok * X X K ok ok ok

Page 76 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Normally, holding a reference to a cpuset without bumping its
count is unsafe. The cpuset could go away, or someone could
attach us to a different cpuset, decrementing the count on

the first cpuset that we never incremented. But in this case,
top_cpuset isn't going away, and either task has PF_EXITING set,
which wards off any attach_task() attempts, or task is a failed
fork, never visible to attach_task.

| I I N D R R
* ok k% % Kk ok ok ok ok F ¥ X

Another way to do this would be to set the cpuset pointer

to NULL here, and check in cpuset_update task _memory_state()
for a NULL pointer. This hack avoids that NULL check, for no
cost (other than this way too long comment ;).

**/

-void cpuset_exit(struct task_struct *tsk)

-{

- struct cpuset *cs;

- CS = tsk->cpuset;

- tsk->cpuset = &top_cpuset; /* the_top_cpuset_hack - see above */
- if (notify_on_release(cs)) {

- char *pathbuf = NULL;

- mutex_lock(&manage_mutex);

- if (atomic_dec_and_test(&cs->count))

- check_for_release(cs, &pathbuf);

- mutex_unlock(&manage_mutex);

- cpuset_release_agent(pathbuf);

- }else {

- atomic_dec(&cs->count);

-}

-}

Jr*
* cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
* @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.

*

@@ -2274,7 +1410,7 @@ cpumask_t cpuset_cpus_allowed(struct tas

mutex_lock(&callback mutex);
task_lock(tsk);
- guarantee_online_cpus(tsk->cpuset, &mask);
+ guarantee_online_cpus(task_cs(tsk), &mask);
task_unlock(tsk);
mutex_unlock(&callback _mutex);

Page 77 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

@@ -2302,7 +1438,7 @@ nodemask_t cpuset_mems_allowed(struct ta

mutex_lock(&callback mutex);
task_lock(tsk);
- guarantee_online_mems(tsk->cpuset, &mask);
+ guarantee_online_mems(task_cs(tsk), &mask);
task_unlock(tsk);
mutex_unlock(&callback mutex);

@@ -2423,7 +1559,7 @@ int ___cpuset_zone_allowed_softwall(struc
mutex_lock(&callback mutex);

task_lock(current);
- €S = nearest_exclusive_ancestor(current->cpuset);
+ cs = nearest_exclusive_ancestor(task _cs(current));
task_unlock(current);

allowed = node_isset(node, cs->mems_allowed);

@@ -2552,7 +1688,7 @@ int cpuset_excl_nodes_overlap(const stru
task _unlock(current);
goto done;
}

- csl = nearest_exclusive_ancestor(current->cpuset);

+ csl = nearest_exclusive_ancestor(task _cs(current));
task_unlock(current);

task_lock((struct task_struct *)p);
@@ -2560,7 +1696,7 @@ int cpuset_excl_nodes_overlap(const stru
task _unlock((struct task_struct *)p);
goto done;
}
- €S2 = nearest_exclusive_ancestor(p->cpuset);
+ cs2 = nearest_exclusive_ancestor(task_cs(p));
task _unlock((struct task_struct *)p);

overlap = nodes_intersects(csl->mems_allowed, cs2->mems_allowed);
@@ -2596,14 +1732,13 @@ int cpuset_memory_pressure_enabled _ rea

void ___cpuset_memory_pressure_bump(void)

{

- struct cpuset *cs;
task_lock(current);

- CS = current->cpuset;

- fmeter_markevent(&cs->fmeter);

+ fmeter_markevent(&task_cs(current)->fmeter);
task_unlock(current);

}

Page 78 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

+#ifdef CONFIG_PROC_PID_CPUSET

+

/*
* proc_cpuset_show()
* - Print tasks cpuset path into seq_file.

@@ -2634,15 +1769,15 @@ static int proc_cpuset_show(struct seq_f
goto out_free;

retval = -EINVAL,
- mutex_lock(&manage_mutex);
+ rcfs_manage_lock();

- retval = cpuset_path(tsk->cpuset, buf, PAGE_SIZE);
+ retval = rcfs_path(task_cs(tsk)->dentry, buf, PAGE_SIZE);
if (retval < 0)
goto out_unlock;
seq_puts(m, buf);
seq_putc(m, \n");
out_unlock:
- mutex_unlock(&manage _mutex);
+ rcfs_manage_unlock();
put_task_struct(tsk);
out_free:
kfree(buf);
@@ -2662,6 +1797,7 @@ struct file_operations proc_cpuset_opera
llseek = seq_lIseek,
.release = single_release,

h
+#endif /* CONFIG_PROC_PID_CPUSET */

* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
diff -puN kernel/exit.c~cpuset_uses_rcfs kernel/exit.c
--- linux-2.6.20.1/kernel/exit.c~cpuset_uses_rcfs 2007-03-08 22:35:35.000000000 +0530
+++ linux-2.6.20.1-vatsa/kernel/exit.c 2007-03-08 22:35:35.000000000 +0530
@@ -30,7 +30,6 @@
#include <linux/mempolicy.h>
#include <linux/taskstats_kern.h>
#include <linux/delayacct.h>
-#include <linux/cpuset.h>
#include <linux/syscalls.h>
#include <linux/signal.h>
#include <linux/posix-timers.h>
@@ -926,7 +925,6 @@ fastcall NORET_TYPE void do_exit(long co
__exit_files(tsk);
__exit_fs(tsk);
exit_thread();

Page 79 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

- cpuset_exit(tsk);
exit_keys(tsk);

if (group_dead && tsk->signal->leader)
diff -puN kernel/fork.c~cpuset_uses_rcfs kernel/fork.c
--- linux-2.6.20.1/kernel/fork.c~cpuset_uses_rcfs 2007-03-08 22:35:35.000000000 +0530
+++ linux-2.6.20.1-vatsa/kernel/fork.c 2007-03-08 22:35:35.000000000 +0530
@@ -30,7 +30,6 @@
#include <linux/nsproxy.h>
#include <linux/capability.h>
#include <linux/cpu.h>
-#include <linux/cpuset.h>
#include <linux/security.h>
#include <linux/swap.h>
#include <linux/syscalls.h>
@@ -1058,13 +1057,12 @@ static struct task_struct *copy_process(
p->io_context = NULL;
p->io_wait = NULL,;
p->audit_context = NULL,;
- cpuset_fork(p);
#ifdef CONFIG_NUMA
p->mempolicy = mpol_copy(p->mempolicy);
if (IS_ERR(p->mempolicy)) {
retval = PTR_ERR(p->mempolicy);
p->mempolicy = NULL;
- goto bad_fork_cleanup_cpuset;
+ goto bad_fork_cleanup_delays_binfmt;
}
mpol_fix_fork_child_flag(p);
#endif
@@ -1288,9 +1286,7 @@ bad_fork_cleanup_security:
bad_fork_cleanup_policy:
#ifdef CONFIG_NUMA
mpol_free(p->mempolicy);
-bad_fork _cleanup_cpuset:
#endif
- cpuset_exit(p);
bad_fork cleanup_delays_binfmt:
delayacct_tsk_free(p);
if (p->binfmt)

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

File Attachnents

Page 80 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php

1) rcfs.patch, downl oaded 304 tines
2) cpu_acct. patch, downl oaded 318 tines
3) cpuset _uses rcfs.patch, downl oaded 323 tines

Page 81 of 81 ---- Cenerated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=getfile&id=405
https://new-forum.openvz.org/index.php?t=getfile&id=406
https://new-forum.openvz.org/index.php?t=getfile&id=407
https://new-forum.openvz.org/index.php

