Subject: Re: [PATCH 0/2] resource control file system - aka containers on top of
nsproxy!
Posted by serue on Wed, 07 Mar 2007 20:58:46 GMT

View Forum Message <> Reply to Message

Quoting Srivatsa Vaddagiri (vatsa@in.ibm.com):

> On Wed, Mar 07, 2007 at 11:43:46AM -0600, Serge E. Hallyn wrote:
> > | still think the complaint was about terminology, not implementation.
>

> | don't think that is what http://lkml.org/lkml/2007/2/12/426 conveyed!

| don't have that in my inbox anymore so won't reply to it itself
unfortunately, but what it conveyed is also not that nsproxy should be
the 'resource control' object. If anything it seems to argue that all of
Paul's patchset should be done in userspace.

Sam writes

> That's a great idea for a set of

> tightly integrated userland utilities to simplify the presentation to

> the admin, but | don't see why you need to enshrine this in the kernel.
> Certainly not for any of the other patches in your set as far as | can

> see.

| disagree.
Sam, there are two very separate concepts here. Actually three.

What you had originally presented in a patchset was resource
virtualization: so when process A asks for some resource X, rather than
get resource_table[X] he gets resource_table[hash(x)]. The concensus
you mention at the start, and which you say Eric was arguing for, was to
not do such translation, but just get rid of the global

'resource_table'. By allowing processes to have and manipulate their
own private resource_table, you implement namespaces.

And as I've said, the nsproxy is just an implementation detail to keep
namespace pointers out of the task struct. Using nsproxy or not has
nothing to do with the namespace approach versus global resource tables
with id translation at all userspace->kernel boundaries.

So virtualization via explicit translation through global resource

tables is one concept, and private namespaces could be said to be a
second. The third is resource controls, which Paul's container patchset
implements. It has nothing to do with the previous two, and it is what
Paul's patches are addressing.

Sam asks:

Page 1 of 2 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=3454&goto=17589#msg_17589
https://new-forum.openvz.org/index.php?t=post&reply_to=17589
https://new-forum.openvz.org/index.php

> Ask yourself this - what do you need the container structure for so
> badly, that virtualising the individual resources does not provide for?

To keep track of a process' place in any of several hierarchies, where
each node in a tree inherit default values from the parent and can
customize in some way.

> You don't need it to copy the namespaces of another process ("enter")
> and you don't need it for checkpoint/migration.

Because these have nothing to do with resource controls.
> What does it mean to make a new container?

It means to create a new set of limits, probably inheriting defaults
from a parent set of limits, customizable but probably within some
limits imposed by the parent. For instance, if there is a cpuset
container which limits its tasks to cpus 7 and 8, then when a new
container is created as a child of that one, it can be further
restricted, but can never have more than cpus 7 and 8.

> That's a great idea for a set of
> tightly integrated userland utilities to simplify the presentation to
> the admin, but | don't see why you need to enshrine this in the kernel.

If you want to argue that resource controls should be done in userspace
i *suspect* you'll find that approach insufficient but am interested to
see attempts to do so.

But just moving the container structure into nsproxy is just that

- moving the container structure. Since Sam argues vehemently that
there should be no such thing, | don't see how he can be seen as wanting
to move it.

All that being said, if it were going to save space without overly
complicating things I'm actually not opposed to using nsproxy, but it

looks to me like it does complicate things. One reason for this is that
through the nsproxy subsystem we are mixing pointers to data (the
namespaces) and pointers to pointers to the same data (nsproxy subsystem
containers pointing to nsproxies) in the same structure. Yuck.

-serge

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum


https://new-forum.openvz.org/index.php

