
Subject: Re: [RFC] ns containers (v2): namespace entering
Posted by serue on Tue, 20 Feb 2007 16:27:08 GMT
View Forum Message <> Reply to Message

Quoting Eric W. Biederman (ebiederm@xmission.com):
> "Serge E. Hallyn" <serue@us.ibm.com> writes:
>
> > (Updated patchset addressing Paul's comments. Still looking more
> > for discussion on functionality, but barring much of that I guess
> > I'll do something with tsk->fs then send the set to lkml)
> >
> > The following patchset uses the ns container subsystem to implement
> > namespace entering. It applies over the container patchset Paul
> > sent out earlier today.
> >
>
> Let's describe the problem. There are two usage scenarios.
> - Working with the parameters of an existing namespace.
> (For example: changing or reading the hostname of a container you are not
> in, or setting/reading various resource limits).
> - Logging in to an existing namespace. I.e. You are the uber sysadmin
> and the person running a container has a problem or something similar.
>
> Until we work through the details of the pid namespace there are going
> to be details of this we cannot finalize, because we will not have finalized
> how traditional process groups work. Something more for my todo guess.
>
> I have given this some though and I can describe how far we can go without
> implementing a traditional enter, which is a very long ways.
>
>
>
> For the general management functions most things already have or can
> have added a filesystem interface, and we just need to make that
> filesystem interface per process...
>
> That is we can do like what is currently done with /proc/mounts and
> make /proc/sys a symlink to /proc/self/sys and /proc/<otherpid>/sys
> can be that other processes view of all of the sysctls.
>
> We can do the same thing with /proc/net, and /proc/sysvipc and
> possibly /sys/net although that is a more difficult. sysfs is a pain
> to work with.
>
>
>
> For the actual enter functionality what is currently possible is ugly
> to implement but extremely close to something useful. You can use

Page 1 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=204
https://new-forum.openvz.org/index.php?t=rview&th=1998&goto=17474#msg_17474
https://new-forum.openvz.org/index.php?t=post&reply_to=17474
https://new-forum.openvz.org/index.php

> sys_ptrace and pick a random process and with a little care cause
> it to fork and exec the executable of your choice. With these
> manipulations you can create things like unix domain sockets and
> pipes and that can be used to talk with the parent process. It has
> been a while since I have done this so I don't remember the exact
> limits are but I have gotten a fully functional login shell this way.
> The big practical problem was who is the parent process.
> CAP_SYS_PTRACE is the governing capability here.
> I've got the code around someplace for doing this if you are curious.
>
> If we optimize/cleanup this case it looks a lot like what (I think it
> was Cedric) was proposing about a year ago. A magic fork that does
> the enter for you. Since the caller controls the binary we don't
> have the usual concerns about the magic fork becoming spawn, because
> we can program the binary to do anything else it needs after the fork.
>
> > This is RFC not just on implementation, but also on whether to do
> > it at all. If so, then for all namespace, or only some? And if not,
> > how to facilitate virtual server management.
>
> My gut feeling is the best way to go is something that is a refinement
> of the two techniques I have listed above.
>
> >
> > = Security =
> >
> > Currently to enter a namespace, you must have CAP_SYS_ADMIN, and must
> > be entering a container which is an immediate child of your current
> > container. So from the root container you could enter container /vserver1,
> > but from container /vserver1 you could not enter /vserver2 or the root
> > container.
> >
> > This may turn out to be sufficient. If not, then LSM hooks should be
> > added for namespace management. Four hooks for nsproxy management (create,
> > compose, may_enter, and enter), as well as some security_ns_clone hook for
> > each separate namespace, so that the nsproxy enter and compose hooks have
> > the information they need to properly authorize.
>
> You miss an issue here. One of the dangers of enter is leaking
> capabilities into a contained set of processes. Once you show up in

Good point. As wrong as it feels to me to use ptrace for this, the
advantage is that none of my task attributes leak into the target
namespace, and that's a very good thing.

I do wonder how you specify what the forced clone should run.
Presumably you want to run something not in the target container.
I suppose we can pass the fd over a socket or something.

Page 2 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

Herbert, does this sound like it suffices to you? Of course, it does
mean that you cannot switch just a few namespaces. How does that limit
you?

> /proc processes can change into your working directory which is
> outside of the container for example.

I suppose I could get into specific ways that this could be prevented
from being exploited, but for now I'll just stick to agreeing that there
would be a whole bunch of issues like this, and we'd likely miss more
than one.

> > = Quick question =
> >
> > Is it deemed ok to allow entering an existing namespace?
> >
> > If so, the next section can be disregarded. Assuming not, the following
> > will need to be worked out.
>
> I think we need to take a good hard look at the alternatives, because
> the are very functional.
>
> > = Management alternatives =
> >
> > Mounts
> >
> > Ram has suggested that for mounts, instead of implementing namespace
> > entering, the example from the OLS Shared Subtree paper could be
> > used, as follows (quoting from Ram):
>
> Does anyone know why we have the shared subtree entering instead of
> a enter on a fs namespace? I'm curious about the reasoning for that
> design decision.
>
> > Herbert, and anyone else who wants mounts namespace entering, is the
> > above an acceptable alternative?
> >
> > net+pid+uts
> >
> > Not sure about uts, but I'm pretty sure the vserver folks want the ability
> > to enter another existing network namespace, and both vserver and openvz
> > have asked for the ability to enter pid namespaces.
> >
> > The pid namespaces could be solved by always generating as many pids for
> > a process as it has parent pid_namespaces. So if I'm in /vserver1, with
> > one pid_namespace above me, not only my init process has an entry in the
> > root pid_namespace (as I think has been suggested), but all my children

Page 3 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

> > will also continue to have pids in the root pid_namespace.
>
> Yes. This looks to be the most sensible thing and now that we have
> struct pid we don't have to special case anything to implement a
> pid showing up in multiple pid namespaces. So it is my expectation
> that each process will show up in the pid namespace of all of it's
> parents up to init.

In fact we were thinking there could be an additional clone flag when
doing CLONE_PIDNS to determine whether all processes get pids in all
ancestor pid_namespaces or not, since really the only change should be
an overhead at clone() for allocing and linking the additional struct
pid_nr's.

> > Or, if it is ok for the pid namespace operations to be as coarse as
> > "kill all processes in /vserver1", then that was going to be implemented
> > using the namespace container subsystem as:
> >
> > 	rm -rf /container_ns/vserver1
>
> To some extent I have an issue with this since we have kill and
> signals and other mechanisms already existing for most of this
> the duplication at the very least seems silly.

But you don't really. If I want to kill all processes in a child
container, I don't have an easy way to list only the processes in the
child container using, say, ps. Those processes are just lumped in with
my own, and with those from all my other child containers.

So we'd end up looping over all pids, checking their ->container, then
killing them, and hoping that nothing funky happens meanwhile like that
process dies and pids wrap around while i'm sleeping (ok, unlikely, but
not impossible).

I'm not saying I'm hung up on doing it with an rm /container_ns/vs1. If
the only use for the ns container subsystem ends up being to tie
resource management to containers, I'll be very happy.

> > Any other (a) requirements, (b) ideas for alternate pid and network
> > ns management without allowing namespace enters?
>
>
> See above.
>
> I'm stretched pretty thin at the moment, so this will have to do for
> a first set of comments.

Thanks for your time, Eric.

Page 4 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

-serge

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Page 5 of 5 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

