Subject: Re: MCR
Posted by Daniel Lezcano on Thu, 14 Dec 2006 10:01:42 GMT

View Forum Message <> Reply to Message

Masahiko Takahashi wrote:

> Thank you Daniel. I'm now getting much understanding about
> what MCR does. Then, the next step you are going to do is

> to implement sk_filter and check its performance ?

Yes after network isolation is finished.

>

> On Wed, 2006-12-13 at 11:34 +0100, Daniel Lezcano wrote:

>> There are 2 aspects:

>> - TCP buffer

>> - TCP re-transmission

>>

>> \When you checkpoint, the outgoing packets are dropped when they are sent
>> put the buffer is still there until the packets are acked by the peer

>> (and that never happens because the traffic is dropped). These buffers
>> are checkpointed. When you restart, you restore these buffers, you

>> release the traffic and the TCP layer continue to send the packets. It
>> is like you unplugged the network cable, wait a little and plugged it,

>> the TCP traffic is resumed. We rely on the TCP mechanisms.

>

>> |n the TCP communication process, the receiver send the remaining opened
>> windows he has. The sender rely on that to send the nb bytes

>> corresponding. If you send a zero window while the sender is expecting
>> to have at least "last windows - nb bytes sent", depending on the TCP
>> implementation, nothing can happen (traffic will block), sender can

>> decide to drop the connection because it thinks it is inconsistent or

>> you can have other behaviors like retransmissions ...

>

> | understand MCR relies on TCP's robustness and zero-window

> advertisement has a delicate issue, but I, as a network

> amateur, still couldn't believe zero-window's inconsistency

> is a serious problem...

Both client and server have a 4096 window size. The server application
is blocked (control+Z, data processing, stucked, ...) so it never reads
the incoming traffic.

1. Client send 1024 bytes to server

2. Server ack these data and the window is 3072 (4096-1024)

3. Client send 1024 bytes again to server

4. Client ack these data but with a window advertisement of zero,
normally this one should be between 2048 and 4096, no less than 2048.

Page 1 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php?t=usrinfo&id=530
https://new-forum.openvz.org/index.php?t=rview&th=3339&goto=17049#msg_17049
https://new-forum.openvz.org/index.php?t=post&reply_to=17049
https://new-forum.openvz.org/index.php

Client Server

I I
| 1:1025(1024), win 4096 |

| 1025:2049(1024), win 4096 |

Perhaps, it could work, perhaps not. To use the zero window we should
check that all TCP stacks are compatible with that. If we have a server
running on linux and we checkpoint it, it will not be cool if all

windows client lose their connecions while all linux client or mac

clients stay blocked.

>

>> When an application creates a socket, write to it and close it, the

>> connection stay alive until all data are sent and wait for a moment in a

>> gpecific tcp state (LAST_ACK, CLOSE_WAIT, TIME_WAIT, ...). After a time
>> the socket is destroyed, freezing the sockets timer will avoid the

>> socket to be destroyed. Do netstat -tano command...

>

> |t seems we should check there is no packet in receive_queue

> before closing the socket. If there is, the kernel tries to

> send a RESET packet.

The receive and the send queue are checkpointed. If the receive queue is
not flushed before destroying the socket, there is no issue because the
RST packet will be dropped because of the blocked traffic.

Regards.

-- Daniel

Containers mailing list
Containers@lists.osdl.org
https://lists.osdl.org/mailman/listinfo/containers

Page 2 of 2 ---- Generated from OpenVZ Forum

https://new-forum.openvz.org/index.php

